
www.manaraa.com

University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

8-2012 

Higher-Order Corrections in Effective Theory of Deformed Nuclei Higher-Order Corrections in Effective Theory of Deformed Nuclei 

Jialin Zhang 
jzhang36@utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Nuclear Commons 

Recommended Citation Recommended Citation 
Zhang, Jialin, "Higher-Order Corrections in Effective Theory of Deformed Nuclei. " Master's Thesis, 
University of Tennessee, 2012. 
https://trace.tennessee.edu/utk_gradthes/1276 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1276&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


www.manaraa.com

To the Graduate Council: 

I am submitting herewith a thesis written by Jialin Zhang entitled "Higher-Order Corrections in 

Effective Theory of Deformed Nuclei." I have examined the final electronic copy of this thesis for 

form and content and recommend that it be accepted in partial fulfillment of the requirements 

for the degree of Master of Science, with a major in Physics. 

Thomas Papenbrock, Major Professor 

We have read this thesis and recommend its acceptance: 

Yuri A. Kamyshkov, Marianne Breinig 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



www.manaraa.com

To the Graduate Council:

I am submitting herewith a thesis written by Jialin Zhang entitled “Higher-Order

Corrections in Effective Theory of Deformed Nuclei.” I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted

in partial fulfillment of the requirements for the degree of Master of Science, with a

major in Physics.

Thomas Papenbrock, Major Professor

We have read this thesis
and recommend its acceptance:

Thomas Papenbrock

Yuri A. Kamyshkov

Marianne Breinig

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



www.manaraa.com

Higher-Order Corrections in

Effective Theory of Deformed

Nuclei

A Thesis Presented for

The Master of Science

Degree

The University of Tennessee, Knoxville

Jialin Zhang

August 2012



www.manaraa.com

Copyright c© 2012 by Jialin Zhang

All Rights Reserved.

ii



www.manaraa.com

To My Beloved Parents

iii



www.manaraa.com

Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Thomas

Papenbrock, for his invaluable mentorship, boundless patience and infinite support

throughout my graduate study and research work. It is the many inspirational ideas

he shared with me and countless time we spent together to discuss that encourages me

to conquer one challenge after another in the scientific exploration, and enables me to

accomplish this thesis. I am also extremely grateful to Dr. Yuri Kamyshkov and Dr.

Marianne Breinig, not only for serving on my thesis committee, but more importantly,

for the most considerate guidance and the most generous help they offered me toward

my completion of the Master’s degree.

In addition, my sincerest appreciation is extended to Dr. James Parks, Dr.

Frederick Klein, Ms. Joann Ng Hartmann, Mr. David Lawson, the Crenshaw Student

Aid Fund Committee at the Center for International Education of the University

of Tennessee, and Ms. Chrisanne Romeo, for providing me with most timely and

enthusiastic assistance and care when I was in need. Without them I can’t imagine

that I’d ever be able to go through the hard time in the United States. Special

thanks to Dr. Bradley VanderZanden, Dr. Kenneth Read and Dr. Stefan Spanier,

whose instruction and communication in the courseworks tremendously broadened

my perspectives and strengthened my confidence in the pursuit of dream.

It is because all these people whom I am blessed to know, that my experiences

at the University of Tennessee become the most precious and memorable part of my

life.

iv



www.manaraa.com

Abstract

The low-energy excitation bands of open-shell heavy nuclei have been accounted

for by collective motion of the constituting nucleons. Macroscopically, heavy nuclei

can be looked upon as deformed rotors undergoing surface vibration and rotation.

Traditionally, deformed nuclei are described within the Bohr-Mottelson geometric

model or the interacting boson model. An effective theory that exploits spontaneous

symmetry breaking has recently been developed for axially deformed nuclei. It

describes the rotational and vibrational degrees of freedom in terms of Nambu-

Goldstone bosons and quadrupole phonons respectively, with a power counting based

on their different energy scales. A systematic way to construct the rotationally

invariant Lagrangian under axial symmetry was established at next-to-leading order.

The purpose of this thesis is to extend the effective theory for deformed nuclei

up to next-to-next-to-leading order. Higher-order corrections to Nambu-Goldstone

modes and rotation-vibration coupling for both even-even nuclei and odd-mass nuclei

are studied. For pure rotation, higher-order Nambu-Goldstone modes prove to

only perturb the energy spectrum by the corresponding powers of the leading-order

eigenenergy. As expected, the next-to-next-to-leading-order calculation of Nambu-

Goldstone modes exhibits a higher accuracy than next-to-leading order after fitting

to experimental level schemes. When vibration is coupled to rotation, the next-

to-leading-order Hamiltonian correctly yields the rotational-vibrational spectrum of

deformed nuclei. In the derivation of rotation-vibration coupling Hamiltonian in even-

even nuclei, a perturbative method (Fukuda’s inversion method) for the Legendre
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transformation is employed. The effect of next-to-next-to-leading-order rotation-

vibration coupling yields a correction of the moment of inertia that depends on

the vibrational band head. Furthermore, for odd-mass nuclei with finite ground-

state spins, a gauge invariant Hamiltonian is obtained. While the rotational band

encompasses a combined contribution from intrinsic spin and azimuthal angular

momentum, the vibrational spectrum exhibits a feature of Landau levels with a high

density of states, stemming from the velocity-dependent Lagrangian.
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Chapter 1

Introduction

The prosperity of the modern world has been dramatically propelled by the

exploitation of atomic nuclei: nuclear power, nuclear medicine, environmental tracers,

just to name a few. The study of nuclear structure and dynamics is a subject of

enduring and significant interest, for the reason of both its immensurable application

potential and its profound connections with other branches of modern physics. The

fact that atomic nuclei are a collection of species ranging widely in the way of proton-

neutron composition and manifesting a vast variety of phenomena, predicates that a

comprehensive understanding of nuclear structure must rely on a clear identification

of distinct aspects of the nuclear features, as well as an appreciation of different

models. The two remarkable models that provide a foundation for our understanding

are the shell model [2, 3] and the collective model [4, 5], upon which most following

development of nuclear theory is based.

The shell model, focusing on the individual motions of the nucleons, assumes a

spherical potential for the nucleon-nucleon interaction and aims to solve a many-

body eigenvalue problem in principle. While the residual interactions arising from

the departure from closed shell are often considered weak enough to be treated

as perturbations, the goal of reaching a self-consistent solution to the many-body

Schrödinger equation can be generally achieved by means of the Hartree-Fock

1
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approach within mean-field theory. Recent progresses in the shell model have

managed to overcome many earlier drawbacks it suffered. Novel numerical algorithms

such as Lanczos construction, Monte Carlo methods, have been greatly developed

to accelerate the matrix diagonalization. Large quadrupole moments and strong

transitions between low-lying excitation states of a number of heavy nuclei in the

mid-shell region have been obtained by the shell-model calculation [6]. The rotational

motion has been successfully brought into the context of the spherical shell model by

SU(3) symmetry [7, 8].

While the shell model is grounded on an independent-particle point of view, its

limitations are strongly recognized by physicists, particularly in handling medium and

heavy nuclei. The dimensionality of the matrices in Slater determinantal spaces is

often so huge that they cannot be diagonalized at present. For example, in 154
62Sm up

to around 1014 states can be constructed for 0+ level in the major shell [9]. Although

the overwhelming capability of computational power nowadays has to a large extent

enabled such calculations for rare-earth nuclei, the process is usually intractable and

the final results are hard to interpret. Moreover, the shell model, adopting a spherical

configuration from the beginning, neglects an important fact that many nuclei are

intrinsically deformed at their equilibrium state.

These problems are well addressed by the pioneering work of Bohr [4], who was

later joint by Mottelson [5] in 1950s, with the proposal of a collective description of

the atomic nuclei. They depict the nucleons to be moving coherently in the atomic

nucleus which exhibit collective behavior, whose motivation can be traced back to the

very first model of nuclear theory - the liquid drop model. The collective motion can

be decomposed into many modes, with the central ones being the surface vibration

and rotation. Figure 1.1 shows the most basic modes of surface vibration, among

which the quadrupole mode is the one most commonly detected. Figure 1.2 is a

rotation scheme of a deformed nucleus, which essentially is analogous to a rigid rotor.

One of the glorious triumphs of the collective model is that it successfully explains

the low-lying excitation bands of heavy nuclei associated with rotation, which is of

2
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Types of Multipole Deformations Types of Multipole Deformations 

�The monopole mode, , , , λλλλ = 0. 

The spherical harmonic Y00 is constant, so that

a nonvanishing value of αααα00 corresponds to a change of the radius of the sphere. 

The associated excitation is the so-called breathing mode of the nucleus. Because 

of the large amount of energy needed for the compression of nuclear matter,  this 

mode is far too high in energy to be important for the low-energy spectra

discussed here. The deformation parameter αααα00 can be used to cancel the overall 

density change present as a side effect in the other multipole deformations. 

ππππ4

1
00 ====Y

groundstate

λλλλ=0

�The dipole mode, λλλλ = 1.

Dipole deformations, λλλλ = 1 to lowest order, really do not 

correspond to a deformation of the nucleus but rather to a 

shift of the center of mass, i.e. a translation of the nucleus, and 

should be disregarded for nuclear excitations since 

translational shifts are spurious. 

θθθθcos10 ≈≈≈≈Y

(a) dipole

Types of Multipole Deformations Types of Multipole Deformations 

�The quadrupole mode, , , , λλλλ = 2                                                 

The quadrupole deformations - the most important 

collective low energy excitations of the nucleus. 

�The octupole mode, , , , λλλλ = 3

The octupole deformations are the principal asymmetric 

modes of the nucleus associated with negative-parity bands. 

�The hexadecupole mode, , , , λλλλ = 4

The hexadecupole deformations: this is the highest angular 

momentum that has been of any importance in nuclear 

theory. While there is no evidence for pure hexadecupole 

excitations in the spectra, it seems to play an important role 

as an admixture to quadrupole excitations and for the 

groundstate shape of heavy nuclei.

(b) quadrupole

Types of Multipole Deformations Types of Multipole Deformations 

�The quadrupole mode, , , , λλλλ = 2                                                 

The quadrupole deformations - the most important 

collective low energy excitations of the nucleus. 

�The octupole mode, , , , λλλλ = 3

The octupole deformations are the principal asymmetric 

modes of the nucleus associated with negative-parity bands. 

�The hexadecupole mode, , , , λλλλ = 4

The hexadecupole deformations: this is the highest angular 

momentum that has been of any importance in nuclear 

theory. While there is no evidence for pure hexadecupole 

excitations in the spectra, it seems to play an important role 

as an admixture to quadrupole excitations and for the 

groundstate shape of heavy nuclei.

(c) octupole

Types of Multipole Deformations Types of Multipole Deformations 

�The quadrupole mode, , , , λλλλ = 2                                                 

The quadrupole deformations - the most important 

collective low energy excitations of the nucleus. 

�The octupole mode, , , , λλλλ = 3

The octupole deformations are the principal asymmetric 

modes of the nucleus associated with negative-parity bands. 

�The hexadecupole mode, , , , λλλλ = 4

The hexadecupole deformations: this is the highest angular 

momentum that has been of any importance in nuclear 

theory. While there is no evidence for pure hexadecupole 

excitations in the spectra, it seems to play an important role 

as an admixture to quadrupole excitations and for the 

groundstate shape of heavy nuclei. (d) hexadecupole

Figure 1.1: Basic modes of surface vibration

the form

El,K =
~2

2I
(
l(l + 1)−K(K + 1)

)
. (1.1)

Here, I is the moment of inertia and l is the total angular momentum quantum

number. K is the quantum number of the projection of total angular momentum

along the symmetry axis of the deformed nucleus, which characterizes the excitations

of intrinsic angular momentum (i.e. spin). Since the total angular momentum is the

superposition of the orbital part and the spin, l can only take on the values l ≥ K.

If one looks at the even-even nuclei in the chart of nuclides (Figure 1.3), the energy

ratios E4+/E2+ in the rare-earth and actinide regions are mostly close to 10/3, which

signifies a rotational band of formula Eq.1.1 and implies the deformability of the rare-

earth nuclei. Also note that open-shell nuclei favor a deformed shape in their ground

state, while spherical nuclei are typically found around closed shells.

A typical level scheme that demonstrates the deexcitation of a deformed nucleus

(162Dy here, taken from Ref. [1]) in the collective excitation region is shown in

Figure 1.2: Collective rotation of a deformed nucleus

3
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Figure 1.3: Chart of nuclides for even-even nuclei (from National Nuclear Data
Center, URL: http://www.nndc.bnl.gov/chart/)

Figure 1.4. There are three rotational bands in this level scheme of 162Dy: the

ground-state band with band-head Jπ = 0+, the first excited β-band with band-head

Jπ = 0+ and the first excited γ-band with band-head Jπ = 2+. Experimentally, a

complete level scheme of low-lying excitations of a deformed nucleus is established

through spectroscopic measurements following thermal neutron capture on the odd-

mass isotope of the even-even deformed nucleus. For instance, levels in 162Dy can be

populated by a non-selective, high-flux neutron beam illuminating an enriched target

of 161Dy2O3. Two principal reactions exploited to determine the states information

are the 161Dy(n,γ)162Dy yielding a γ-ray spectrum, and the 161Dy(n,γ)(γ,e−)162Dy

yielding a conversion electron spectrum. The γ spectrum is measured by curved-

crystal spectrometer on the principle of Bragg diffraction, and the conversion electron

spectrum is measured by β spectrometer.

Jπ values of the states can be derived from the transition multipolarities, which

4
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Figure 1.4: Partial level scheme of 162Dy showing the depopulation of the first
excited Kπ = 0+ band at 1400.258 keV, with γ-ray transition energies, intensities
and multipolarities as indicated. (taken from Ref. [1])

are either directly observed in γ transitions or deduced from the measured internal

conversion coefficients on the basis of theoretical values. The completeness of the

low-spin levels is guaranteed by average resonance capture studies. The distinction

between levels with same spin but in different bands can be made with the theoretical

argument that intra-band transition strengths are strong and interband transitions

have relatively weak strength. This results from the calculations of intrinsic matrices

linking low-lying collective bands. While positive-parity bands are described in terms

of quadrupole vibrations, bands with negative parity can be interpreted by octupole

vibrations. For a detailed description of experiments that measure complete spectra

of deformed nuclei, reader can refer to Ref. [1, 10].

Implicit in our discussion is that in many cases it is adequate, at least at the

5
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leading order, to approximate the deformed nuclei as maintaining the axial symmetry,

i.e. variations along any direction in the plane perpendicular to the symmetry axis

are equal. The quadrupole deformation of the surface of axially deformed nuclei is

described by five degrees of freedom. The original Bohr-Mottelson model uses two

shape parameters measuring the extent of the deformation and three Euler angles

measuring the relative position between the co-rotating intrinsic reference frame and

laboratory frame. Extension to the Bohr-Mottelson model has been made to deal

with triaxially deformed nuclei within the asymmetric rotor model [11]. While the

important role of symmetry has been realized since the beginning of the collective

model (See Bohr’s Nobel lecture [12]), it is not until recently an effective theory based

on spontaneous breaking of rotational symmetry is invented for deformed nuclei,

which provides a model-independent view of the collective excitations [13].

Effective field theories (EFT) have been routinely used in physics systems that

display a separation of energy scales, for its impressive efficiency in computing physical

observables. They have gained increasing popularity and success in recent years;

in low-energy nuclear physics, for example, the description of few-nucleon systems

within chiral EFT [14, 15, 16], the application of EFT to halo nuclei [17, 18] and

EFT for dilute fermi systems [19, 20, 21]. EFT are first developed by Weinberg to

study nucleon-nucleon and nucleon-pion interactions based on spontaneous symmetry

breaking of chiral symmetry [22, 23]. In our case of deformed nuclei, due to the finite

size of atomic nucleus, the descriptive fields in the spontaneous breaking of rotational

symmetry are only functions of time (and not of space), so that one simply deals with

quantum mechanics rather than field theory [13].

Within the effective theory, one starts by identifying the relevant pattern of the

symmetry breaking (in our case: the rotational symmetry for deformed nuclei) and

distinguishing the degrees of freedom at different energy scales, then proceeds with

the hunt for building blocks of an invariant Lagrangian under the corresponding

symmetry, through applying the principle of spontaneous symmetry breaking. A

power counting has to be established to allow for the separation of scale and a

6
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systematic extension to higher order. For deformed even-even nuclei in the rare-earth

region, the vibrational degrees of freedom are described in terms of the quadrupole

phonons and the rotational degrees of freedom are described by Nambu-Goldstone

bosons. Validity of the power counting to separate vibration and rotation is justifiable

for the fact that the first rotational excited state Jπ = 2+ states is at several tens of

keV of excitation energy, whereas the first vibrational 2+ state is at about 1 MeV,

i.e. approximately larger by two orders of magnitude. Both low-lying vibrational

and rotational spectra at the leading order, are immediately obtained upon the

quantization of the Hamiltonian [13].

There are many phenomenological models that seek a description of collective

phenomena in atomic nuclei, such as general collective model [24], variable moment

of inertia model [25] and the interacting boson model [26, 27]. However, they

are difficult to be systematically extended and it is difficult to reliably gauge

their accuracy. Furthermore, attempts to generalize the collective model and to

keep it computationally tractable turn out to be non-trivial, primarily because

of the linear realization of rotational symmetry. The advantage of employing a

non-linear realization of the rotational symmetry group (namely, the choice of

different coordinate systems with Nambu-Goldstone modes and quadrupole fields),

has been demonstrated in constructing the Lagrangian and computing the conserved

quantities [13].

The purpose of this thesis is to extend to higher orders within the effective theory

for deformed nuclei, and to go beyond the phenomenological models. The leading-

order (LO) and next-to-leading-order (NLO) calculations have been completed in

Ref. [13]. At this order, one finds an exact agreement with the phenomenological

models. For single rotational bands described by pure Nambu-Goldstone modes, we

will see that not only the next-to-next-to-leading-order (NNLO) corrections indeed

give rise to higher accuracy once fitted to level schemes, but also the orders of

magnitude of the fitting coefficients agree with the estimates of power counting.

One of the main results of this thesis is that in even-even deformed nuclei

7
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the rotation-vibration coupling at next-to-next-to-leading order yields corrections

to the rotational-vibrational spectra that can modify the moment of inertia either

increasingly or decreasingly. The phenomenological geometric models predict a

slightly reduced moment of inertia at higher vibrational excitation states, in

contradiction to the experimental observations. It is more intuitive and reasonable

to have a larger moment of inertia at higher excited states due to the centrifugal

stretching of the nuclei originating from higher angular velocity. In the EFT,

odd-mass nuclei are studied on an equal footing with even-even nuclei, but with

additional time-odd terms entering the Lagrangian. These terms lead to a suppressing

effect to the energy spectra of odd nuclei, which characteristically is the same

with Landau levels in the presence of a constant magnetic field. Technically,

we employ a perturbation method – Fukuda’s inversion method – to perform the

Legendre transformation when deriving the rotationally invariant Hamiltonian. It

is to overcome the complexity of the rotation-vibration coupling terms that admix

different degrees of freedom. The correctness and completeness of the higher-order

corrections are assured by the power counting throughout the derivation.

It should be pointed out that the collective property and single-particle property

of deformed nuclei are in nature deeply related. Efforts to unify the collective model

with the shell model have never stopped [28]. The Nilsson model, as the first one

doing so and enjoying considerable success, suggests a deformed mean field adapted

to the shell structure for deformed nuclei [29]. The concept of spontaneous symmetry

breaking has also been applied to rotating mean field of nuclei under the cranking

model, which is specialized for high-spin phenomena [30, 31]. Intensive researches

have also been conducted on the calculation of parameters of collective Hamiltonian

by microscopic approaches [32, 33, 34]. The aim of the effective theory at higher

orders is not to pursue a unified approach that incorporates microscopic mechanism

into the collectivity, but rather to present an alternative and systematic formalism.

My contribution to the effective theory of deformed nuclei in current study primarily

lies in the modification to moment of inertia at the excited rotational bands, which
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can take on either positive or negative values.

The thesis is organized as follows. Chapter 2 studies the physics of pure Nambu-

Goldstone modes at higher orders, with a focus on individual rotational bands. In

Chapter 3, we couple the quadrupole vibration to rotation for even-even nuclei, and

study the higher-order corrections to the energy spectra resulting from the rotation-

vibration coupling. Odd-mass nuclei are investigated in Chapter 4 (which is a

verification of Papenbrock’s unpublished work). The results in each chapter are

illustrated and supported by comparison to experimental low-excitation spectra of

representative nuclei. A summarization of major findings and a brief outlook are

given in Chapter 5. Current progress pertaining to Nambu-Goldstone modes with

second-order time derivatives is presented in detail in the Appendix.

9
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Chapter 2

Individual Rotational Bands

A system with spherical symmetry is rotationally invariant. A deformation of

such a system introduces a difference in orientation, and thus breaks the rotational

symmetry. For deformed nuclei, the rotational degrees of freedom arising from the

collective mode of excitations, naturally lead one to recall the idea of spontaneously

symmetry breaking. In a strict sense, spontaneous symmetry breaking only happens

in idealized systems that possess an infinitely large number of degrees of freedom [35].

Ferromagnets and superconductors are examples in this approximation, with the

former spontaneously breaking the rotational symmetry and the latter breaking the

local gauge symmetry.

An atomic nucleus has far less degrees of freedom compared to systems like

ferromagnets or superconductors. Nor could the discrete excitation states in the

rotational band mix together under an arbitrarily small perturbation. In other

words, an atomic nucleus at ground state is in general stable, thus not subject to

deformation against an infinitesimal perturbation. Nevertheless, the rationality to

exert spontaneous symmetry breaking on deformed nuclei can be justified by the

separation of energy scales between different degrees of freedom in the collective

excitations. For instance, the first rotational excited states of both 162Dy and 172Yb

are of about 80 keV of excitation energy, while their band heads of vibrational
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excitations are approximately at 1 MeV. This is generally the case for nuclei in the

rare-earth region. An energy that is not infinitesimally small, but much smaller than

any other excitation modes, will still be sufficient to disturb the rotational band

and admix the states with different angular momenta, thus inducing a spontaneous

breaking of the rotational symmetry.

Both theoretically and experimentally, of particular interest is the nuclei de-

formation that preserves the axial symmetry, for its simplicity and commonality.

The ground state of such axially deformed nuclei is not invariant under a general

operation of the full rotation group G = SO(3). However, it is invariant with

respect to operations of the subgroup H = SO(2), which is around the symmetry

axis. Procedures to systematically construct Lagrangian that is invariant under

the subgroup H on the basis of spontaneous symmetry breaking has been fully

demonstrated [13, 35]. Interested readers can refer to Ref. [36, 37, 38] for a description

about constructing low-energy Lagrangians based on spontaneous symmetry breaking.

A generalized approach for non-relativistic effective Lagrangians can be found in [39].

More specifically, it is the coset SO(3)/SO(2) that mathematically describes the

rotational degrees of freedom. The appearance of Nambu-Goldstone bosons in the

spontaneous breakdown of a continuous symmetry naturally provides us with a means

to parameterize the coset. In other words, the Nambu-Goldstone modes correspond

to the collective rotation of deformed nuclei.

The building blocks of an invariant Lagrangian under the subgroup H are

E+, E−, φ, and Dtφ [13], where

E± = Ex ∓ iEy , (2.1)

Dt ≡ ∂t − iEzJz . (2.2)
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Ex = α̇ sin β ,

Ey = −β̇ ,

Ez = −α̇ cos β . (2.3)

Here α(t) and β(t) parameterize the coset SO(3)/SO(2) and are Euler angles that

determine the orientation of the axially symmetric deformed nucleus in the laboratory

frame [40]. Dt is the covariant derivative operator, and Jz is the operator or quantum

number with regard to the component of angular momentum along the symmetry

axis. φ is a field that describes physics at energy scales higher than the rotation.

The vibration of even-even nuclei is appropriately described by the quadrupole field.

The transformation properties of each building block under a general rotation have

also been derived [13]. The transformation properties lay the foundation for us to

construct rotationally invariant Lagrangians within the framework of our effective

theory. Using the well-established power counting based on dimension analysis and

physical arguments, one can always compose rotationally invariant terms and organize

them into the Lagrangian up to the desired order.

In this chapter, we focus on pure Nambu-Goldstone modes related to the

individual rotational band of deformed nuclei. The corrections to the spectra of

the rotational excitations are calculated up to next-to-next-to-leading order. In

the presence of vibration, one must introduce quadrupole phonons described by a

quadrupole field ψ. The field φ in the “building blocks” is a transformation of the

original field ψ, which fulfills the reality relation and discards the redundant degrees

of freedom that have already been included by Nambu-Goldstone modes [13]. We will

see this in next Chapter.

2.1 Spectrum in next-to-next-to-leading order

For even-even nuclei whose ground state is invariant under time reversal, the

Lagrangian of Nambu-Goldstone modes up to next-to-leading order has been written
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out [13]

LLO =
C0

2
E+E− =

C0

2
(α̇2 sin2 β + β̇2) , (2.4)

LNLO = LLO +
C2

4
(E+E−)2 = LLO +

C2

4
(α̇2 sin2 β + β̇2)2 . (2.5)

For odd-mass and odd-odd nuclei, an additional Wess-Zumino term comes into

the LO Lagrangian, so as to satisfy the condition that the ground state is no longer

invariant under time reversal due to the finite spin. It turns out in our effective theory

that the Wess-Zumino term can be expressed by [13]

LWZ ≡ qEz = −qα̇ cos β , (2.6)

so that at leading order, the Lagrangian becomes

LLO =
C0

2
(α̇2 sin2 β + β̇2)− qα̇ cos β , (2.7)

and the NLO Lagrangian keeps the same expression with Eq.2.5.

The LO energy eigenvalues and eigenstates of both even-even and odd nuclei

have been calculated. At the next-to-leading order, the Hamiltonians of Nambu-

Goldstone modes in both cases end up with the same form if written in terms of the

LO Hamiltonian. The NLO correction to the rotational spectrum in pure Nambu-

Goldstone modes is simply two powers of the LO eigenenergy [13], which is exactly

consistent with the results of Bohr-Mottelson model [5] and other phenomenological

models. Now we follow the track down to calculate the NNLO correction in Nambu-

Goldstone modes. Assuming the LO energy scale of Nambu-Goldstone modes is of

order ξ, i.e. ELO ∼ ξ, the dimension analysis at the leading order yields [13]

C0 ∼ ξ−1 ,

α̇ ∼ β̇ ∼ Ex,y,z ∼ ξ . (2.8)
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A further assumption in our effective theory is that the low energy scale of rotation is

well separated from high energy scales of other degrees of freedom (e.g. vibrational,

pairing, nucleonic degrees of freedom). The low energy is associated with Nambu-

Goldstone modes ∼ ξ, and we denote the high energy scale as Ω, where Ω � ξ.

In rare-earth nuclei, Ω ∼ 1 MeV and rotational excitations ξ are about 80 keV.

The entire spectrum can be expanded like a Taylor series so that the ratio between

the higher-order correction and the LO energy must be the powers of ξ/Ω. To be

more concrete, the interactions between Nambu-Goldstone modes and high-energy

excitations, and among Nambu-Goldstone bosons themselves, essentially give rise to

higher-order corrections to the LO rotational bands, which can be factorized by the

powers of ξ/Ω. It is required that ξ/Ω � 1 to fulfill the assumption of the effective

theory. Otherwise, excitations of different degrees of freedom tend to intertwine and

our effective theory will break down. On the other hand, it is satisfactory that in the

limit Ω→∞, all of the higher-order corrections will vanish, which leaves us only the

exact solutions to the eigen equations of leading order.

We look at the next-to-next-to-leading-order (NNLO) correction. The Lagrangian

becomes

LNNLO = LNLO +
C4

6
(E+E−)3 = LNLO +

C4

6
(α̇2 sin2 β + β̇2)3 . (2.9)

Here C4 is the low-energy coefficient that is related to the omitted physics at the

breakdown scale (∼ Ω) and needs to be determined by fitting to data. However, the

dimension analysis and power counting will help us estimate its size before resorting

to the experimental data. According to the power counting, ratio of NNLO correction

to LO energy must be

C4(E+E−)3

C0(E+E−)
=
C4

C0

(E+E−)2 ∼
(
ξ

Ω

)4

, (2.10)
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so that
C4

C0

∼ Ω−4 . (2.11)

The NNLO correction is suppressed by a factor of four powers of ξ/Ω compared to

the LO energy.

To obtain the Hamiltonian we perform the Legendre transformation. The

conjugate momenta are

pα =
∂LNNLO

∂α̇
=
(
C0 + C2 (E+E−) + C4 (E+E−)2) α̇ sin2 β − q cos β , (2.12)

pβ =
∂LNNLO

∂β̇
=
(
C0 + C2 (E+E−) + C4 (E+E−)2) β̇ . (2.13)

This yields the Hamiltonian

HNNLO = pαα̇ + pββ̇ − LNNLO

=
C0

2
(E+E−) +

3C2

4
(E+E−)2 +

5C4

6
(E+E−)3 (2.14)

The LO Hamiltonian and eigenenergy is essentially a classical rotor [13]

HLO =
(pα + q cos β)2

2C0 sin2 β
+

p2
β

2C0

,

ELO =
l(l + 1)− q2

2C0

. (2.15)

where q is the spin of the band head.

For simplicity, we further express it in terms of position and velocity, instead of
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position and momentum

HLO =
(pα + q cos β)2

2C0 sin2 β
+

p2
β

2C0

=
1

2C0

(
C0 + C2 (E+E−) + C4 (E+E−)2)2

(
α̇2 sin2 β + β̇2

)
≈ 1

2C0

(
C2

0 + 2C0C2(E+E−) + C2
2(E+E−)2 + 2C0C4(E+E−)2

)
(E+E−)

=
C0

2
(E+E−) + C2(E+E−)2 +

(
C2

2

2C0

+ C4

)
(E+E−)3 . (2.16)

In each step, the Hamiltonian is truncated to the NNLO precision which is what we

need. Higher-order terms than NNLO can be neglected at all from a practical point

of view. Likewise, up to NNLO the square and the cubic of Hamiltonian are

H2
LO =

C2
0

4
(E+E−)2 + C0C2(E+E−)3 , (2.17)

H3
LO =

C3
0

8
(E+E−)3 . (2.18)

Finally we wish to express HNNLO in terms of HLO. The equation to be solved is quite

straightforward, and

HNNLO = HLO −
C2

C2
0

H2
LO + 4

(
C2

2

C4
0

− C4

3C3
0

)
H3

LO . (2.19)

The perturbation theory gives the spectrum of Nambu-Goldstone modes at once

ENNLO = ELO −
C2

C2
0

E2
LO + 4

(
C2

2

C4
0

− C4

3C3
0

)
E3

LO . (2.20)

We see the second term is equivalent with what has been derived for the NLO

correction [13]. The third term acts as a NNLO correction to the rotational band. If
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we check the order of magnitude of the third term, with Eq.2.11 there are

C2
2

C4
0

∼ ξ2Ω−4 , (2.21)

C4

C3
0

∼ ξ2Ω−4 , (2.22)

thus,

C2
2

C4
0

− C4

3C3
0

∼ ξ2Ω−4 , (2.23)(
C2

2

C4
0

− C4

3C3
0

)
E3

LO ∼ ξ5Ω−4 = ξ

(
ξ

Ω

)4

. (2.24)

Indeed, the order of magnitude of the new correction term is of next-to-next-to-

leading order as we expected. The NNLO energy ENNLO is a polynomial of degree

of three of the LO energy. This is also in agreement with the calculations of all

hitherto phenomenological models. Remember that we are simply using a semi-

phenomenological approach where only the principles of spontaneous symmetry

breaking are needed. Though the calculation here is done for general nuclei, it is

exactly the same in the case of even-even nuclei, for which q = 0.

The unknown coefficients C0, C2 and C4 are to be determined by fitting the spacing

between the first several rotational states in an individual rotational band. The value

obtained by fitting should always be compared with the power counting results, to

ensure the validity of the higher-order corrections in our effective theory. This is the

task of next section.

2.2 Comparison with level schemes

The main result about NNLO correction in Nambu-Goldstone modes is the

rotational energy spectrum Eq.2.20. In this section, we aim to compare it with
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realistic experimental data, and analyze it detailedly and make further physical

arguments.

To ease the job, we first rewrite Eq.2.20 in a simpler form. Since the LO

eigenenergy ELO is [13]

ELO =
1

2C0

l(l + 1) . (2.25)

Here, l is the total angular momentum quantum number.

ENNLO can be expressed as

ENNLO = al(l + 1) + b (l(l + 1))2 + c (l(l + 1))3 . (2.26)

Parameters a, b and c are a redefinition of C0, C2 and C4, and are more straightforward

to use in fitting with level schemes of the rotational excitations. Obviously, their order

of magnitude should be scaled as follows according to the scaling of C0, C2 and C4,

a ∼ ξ ,

b ∼ ξ

(
ξ

Ω

)2

,

c ∼ ξ

(
ξ

Ω

)4

. (2.27)

Below we will see that this is verified by all the results of the fitting.

We choose 172Yb, 242Pu and 238U, whose ground-state rotational bands are shown

in Figure 2.1 (a), (b) and (c), respectively (Band 1 in each scheme). Each entire single

band is fitted by a polynomial function of l(l + 1) in Origin8.6, with the intercept

being imposed to be zero. The highest order of the polynomial function is either two

or three, depending on whether we are fitting in next-to-leading order or next-to-

next-to-leading order.

The results of fitting are shown in Table 2.1 and 2.2, with regard to NLO and

NNLO respectively. As we can see, in both NLO and NNLO fitting, the coefficients

a, b, and c are all of the right orders of magnitude derived by the power counting.
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(a) 172Yb

Figure 2.1: Level schemes of single rotational bands. Spin and parity as indicated,
energies in keV. (Band 1 for fitting. From National Nuclear Data Center, URL:
http://www.nndc.bnl.gov/chart/)
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(b) 242Pu (c) 238U

Figure 2.1: Level schemes of single rotational bands. Spin and parity as indicated,
energies in keV. (Band 1 for fitting. From National Nuclear Data Center, URL:
http://www.nndc.bnl.gov/chart/)
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Table 2.1: Results of NLO fitting for 172Yb, 242Pu and 238U. (Values in keV)

a (ξ ∼ 10) b
(
ξ
(
ξ
Ω

)2 ∼ 0.001
)

172Yb 12.92985 -0.00435

242Pu 7.15542 -0.00175

238U 6.97666 -0.00173

This demonstrates the consistency of our effective theory!

If we insert the obtained a, b and c into ENNLO Eq.2.26, and calculate the energy of

each rotational state in Band 1 of 172Yb, 242Pu and 238U, we can compute the relative

errors of our effective theory with respect to the experimental values of rotational

excitation energy. They are plotted in Figure 2.2 ( (a)172Yb, (b)242Pu, (c)238U ).

Only NLO and NNLO fitting are done for 172Yb and 242Pu rotational bands, whereas

238U band is fitted in all LO, NLO and NNLO. Clearly, NNLO calculation is of the

highest accuracy, and then NLO, with LO being the least accurate. Except for one

or two singularities, on average the precision is raised by approximately one order of

magnitude every time we go one order higher in our effective theory.

Also, it is evident that when the angular momentum is small, the spectra with

higher-order corrections are more stably accurate than low-order spectra. When the

angular momentum quantum number exceeds a threshold (at around 8 to 12), relative

errors of both NLO and NNLO spectra start to slightly fluctuate. This could be due to

Table 2.2: Results of NNLO fitting for 172Yb, 242Pu and 238U. (Values in keV)

a (ξ ∼ 10) b
(
ξ
(
ξ
Ω

)2 ∼ 0.001
)

c
(
ξ
(
ξ
Ω

)4 ∼ 10−7
)

172Yb 13.11313 -0.00659 5.93085× 10−6

242Pu 7.32346 -0.00256 8.54744× 10−7

238U 7.33326 -0.00303 1.04661× 10−6
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(a) 172Yb

Figure 2.2: Effective theory calculations compared to experiments for single
rotational bands

(b) 242Pu

Figure 2.2: Effective theory calculations compared to experiments for single
rotational bands

22



www.manaraa.com

(c) 238U

Figure 2.2: Effective theory calculations compared to experiments for single
rotational bands

the omitted physics at the breakdown scale. To be more specific, in the level schemes

(Figure 2.1), we see that for each element the excitations of higher-energy degrees of

freedom start to come into play at around the energy of 8+ or 12+ rotational state.

One has to take into consideration the influence of other degrees of freedom (e.g.

vibration, pairing etc.), in order to make the higher-order corrections complete and

more precise.

If we look at the NNLO spectra of pure Nambu-Goldstone modes Eq.2.20, we

could estimate it as

ENNLO ≈ ξ + ξ

(
ξ

Ω

)2

+ ξ

(
ξ

Ω

)4

(2.28)

according to the power counting, which is in essence a Taylor series. We have the

even powers of ξ
Ω

as the higher-order corrections, but where are odd powers of it?(
ξ
Ω

)1
is a lower-order correction to ξ and supposed to appear before ξ

(
ξ
Ω

)2
, similarly

for
(
ξ
Ω

)3
. Strictly speaking, ξ

(
ξ
Ω

)2
is not really NLO correction to the collective

excitations, but rather just the NLO correction in pure rotational motion. Neither is
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ξ
(
ξ
Ω

)4
NNLO correction. Once the excitation energy of deformed nuclei reaches the

breakdown scale, i.e. where higher-energy degrees of freedom come into effect, one

has to consider these degrees of freedom and relabel the orders of all the correction

terms and recalculate the energy spectra that include new physics.

The reason that the threshold quantum number where the relative errors begin

to fluctuate is around 10 can be accounted for by the follow estimates. The physics

overlooked should give rise to at least ξ
(
ξ
Ω

)
to the LO rotational energy ξ. When the

NLO term in Eq.2.26 also reaches ξ
(
ξ
Ω

)
, i.e.

l(l + 1)ξ

(
ξ

Ω

)2

∼ ξ

(
ξ

Ω

)
,

⇒ l ∼
(

Ω

ξ

)1/2

. (2.29)

it will become comparable to contributions from the omitted physics, thus signifying

a breakdown of our effective theory. For deformed nuclei, Ω ∼ 1 MeV and ξ ∼ 10

keV, thus l ∼ 10.

The issue of ξ
(
ξ
Ω

)
corrections (namely, the true NLO corrections in the collective

excitations) will be addressed after we go into the next chapter, where the quadrupole

vibration is introduced as the degrees of freedom at high-energy scale. We will see

that ξ
(
ξ
Ω

)
is, in fact, the order of magnitude of the corrections caused by coupling

between vibration and rotation. The corrections will be computed in detail in next

chapter.
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Chapter 3

Coupling of Quadrupole Vibration

to Rotation

In last chapter, we calculate the higher-order corrections in individual rotational

bands of axially deformed nuclei, described purely by Nambu-Goldstone modes. The

form of the higher-order corrections is in consistency with those derived by other

phenomenological models [24] . For highly excited rotational states, the angular

momentum becomes sufficiently large that l ∼ O
(
(Ω
ξ
)1/2
)
, so that the rotational

states starts to mix with excitations of higher-energy degrees of freedom, such as

vibration, pairing, nucleonic excitations and so on. This is clearly visible in the level

schemes (Figure 2.1).

Under such circumstances, one can no longer describe all physics solely in terms

of Nambu-Goldstone modes. New degrees of freedom must be included. As most

commonly occurring type of vibration is quadrupole vibration, quadrupole phonons

have been introduced to describe the vibrational degrees of freedom [13]. Taking

into account the fact that the Nambu-Goldstone bosons essentially result from the

spontaneous symmetry breaking of the entire quadrupole field ψ, namely, they are

part of the degrees of freedom that are already included by ψ, one can parameterize

the five components of ψ by imposing an general rotation operation g ∈ G/H (coset
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SO(3)/SO(2)), leaving it only contain the non-Nambu-Goldstone modes. This leads

to a transformed quadrupole field φ which is totally independent of Nambu-Goldstone

modes. The quadrupole field after parameterization is [13]

φ =


φ2

0

φ0

0

φ−2

 , (3.1)

where φ0 is real, φ2 and φ−2 are complex and conjugate to each other, i.e. φ−2 =

φ∗2. The field has been parameterized so that φ1 = φ−1 = 0. These two degrees

of freedom have been described by the Nambu-Goldstone fields E+ and E−, whose

angular momenta along the axial symmetry axis are also Jz = ±1.

Note that we still have five degrees of freedom in total describing the collective

motion as the Bohr-Mottelson model, but we are using different variables. Bohr-

Mottelson model uses two deformation parameters and three Euler angles. We have

only two Euler angles describing the orientation of the deformed nuclei. This is

indeed appropriate for an axially deformed rigid body. Vibrations are described by

three degrees of freedom, included in the quadrupole field φ. Later we will see in the

vibrational spectrum that for quadrupole vibration, one quantum number represents

the excitations of β-vibration, and the other two corresponds to γ-vibration. This way

of parameterization of quadrupole field and choice of variables is intimately related

to the nonlinear realization of the rotational symmetry.

The building blocks for rotationally invariant Lagrangian now become φ0, φ2,

φ−2, Dtφ0, Dtφ2, Dtφ−2, E+ and E−. One must also realize that there is a non-zero

vacuum expectation value of the field φ at the ground state, let it be v, which is not an

observable. The zero component of the quadrupole field φ0 is in fact oscillating around

v. Therefore, the form of relevant rotationally invariant potential at the leading order

should be that of a harmonic oscillator, if one assumes small motion and minimum

potential at equilibrium state. The potential can be written as follows in terms of the
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quadrupole field [13]

VLO(φ) =
ω2

0

2
(φ0 − v)2 +

ω2
2

4
|φ2|2

=
ω2

0

2
ϕ2

0 +
ω2

2

4
|φ2|2 (3.2)

where we have let ϕ0 = φ0 − v . Also note Dtφ0 = ∂tφ0 = φ̇0 and v is constant, so

Dtφ0 = φ̇0

≡ Dtϕ0 = ϕ̇0 . (3.3)

In another word, what really physically matters is ϕ0, which is the deviation of φ0

from the expectation value v. The building blocks of Lagrangian φ0 and Dtφ0 should

be replaced by φ0 and Dtϕ0, respectively. The power counting and corresponding

analysis have been established in Ref. [13]

v ∼ φ0 ∼ ξ−1/2 ,

ϕ0 ∼ φ2 ∼ Ω−1/2 ,

Dtϕ0 ∼ Dtφ2 ∼ Ω1/2 ,

ω0 ∼ ω2 ∼ Ω . (3.4)

These scaling relations enable the expectation value of the LO potential to scale as

〈VLO〉 ∼ Ω. The LO kinetic terms in quadrupole vibration are ∼ Ω, too. Furthermore,

NLO and NNLO kinetic terms also inevitably enter the Lagrangian. For the potential,

we only consider the LO part VLO. This is because NLO potential VNLO has proved to

be arising from anharmonic oscillations [13], which is of little interest in our theory.

At NLO, the Hamiltonian and energy spectrum have be thoroughly calculated [13],

which is the well-known rotation-vibration band. In this chapter, we go further to

NNLO. The Lagrangian that takes into consideration all of the NNLO correction

terms constructed from the “building blocks” has been written out [13]. These terms
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are attributed to the coupling between rotation and vibration. It is the principle of

effective theory, along with the power counting supported by appropriate physical

arguments, that naturally leads us to discover how rotation and vibration should

interact with each other.

At first glance, the NNLO correction terms seem simple and exhibit a somewhat

symmetrical form. However, once one expands it in terms of Nambu-Goldstone

modes α and β, long expressions will appear. It turns out that to implement

Legendre transformation by brute force in deriving the Hamiltonian is rather tedious.

The primary difficulty is not only because the rotation-vibration coupling terms

admix Nambu-Goldstone modes and quadrupole fields together, but also because the

admixture prevents the quadratic terms from changing into linear after differentiation.

This renders the strict inversion from velocities to momenta difficult. One must resort

to some perturbative way to accomplish it.

Fukuda’s inversion method is perturbative and is employed here to facilitate the

Legendre transformation [41]. We will see that Fukuda’s method tremendously simpli-

fies the procedures and makes the calculated high-order Hamiltonian computationally

tractable. While the eigenvalues of the rotation-vibration energy have been derived

in our effective theory, it is straightforward to calculate the NNLO corrections to the

energy spectrum by quantum perturbation theory.

In this chapter, we focus on even-even nuclei, which have zero spin at the ground

state. Rotation-vibration coupling corrections to odd-mass and odd-odd nuclei can be

tackled in a similar way. Since odd nuclei could have non-zero ground state spin, they

exhibit some other interesting features that even-even nuclei don’t have. Even the

LO energy spectrum of odd nuclei is fundamentally different than that of even-even

nuclei. These are the topics of next chapter.
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3.1 Higher-order Lagrangian

For even-even nuclei, we have following kinetic terms constructed by the quadrupole

field φ constituting the Lagrangian [13]

(Dtϕ0)2 = ϕ̇0
2 ,

Dtφ2Dtφ−2 = (∂tφ2 − 2iφ2Ez) (∂tφ−2 + 2iφ−2Ez)

= |φ̇2|2 − 4EzIm(φ̇2φ
∗
2) + 4|φ2

2|E2
z , (3.5)

A closer inspection to the scale of each term in Eq.3.5 will result in the power counting

ϕ̇0
2 ∼ |φ̇2|2 ∼ Ω ,

EzIm(φ̇2φ
∗
2) ∼ Ez ∼ ξ ,

|φ2
2|E2

z ∼ ξ
ξ

Ω
. (3.6)

Note that the definition of the order of magnitude is different from in last chapter.

Here, the leading order is ∼ O(Ω), the next-to-leading order is ∼ O(ξ), and the next-

to-next-to-leading order is ∼ ξ
(
ξ
Ω

)
, due to the introduction of high-energy quadrupole

vibrations. The second term in Dtφ2Dtφ−2 is of NLO and the third term is of NNLO.

Therefore, the LO Lagrangian that describes the quadrupole vibration is [13]

LLO =
1

2
ϕ̇0

2 + |φ̇2|2 −
ω2

0

2
ϕ2

0 −
ω2

2

4
|φ2|2 . (3.7)

This is simply the Lagrangian that describes the harmonic oscillations of an axially

symmetrical rigid body in three dimensions. The constant 1
2

and 1 before the kinetic

terms are arbitrary since one can always include them into the field. They are chosen

for the convenience to solve the Schrödinger equation.
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At NLO (order O(ξ)), the contributions of quadrupole vibration and Nambu-

Goldstone modes exist simultaneously in the Lagrangian. The Lagrangian be-

comes [13]

LNLO = LLO +
C0

2
(E+E−)− 4EzIm(φ̇2φ

∗
2) . (3.8)

Here φ2 can be written as φ2 = ϕ2e
iγ in the polar coordinates, where the amplitude

ϕ2 and direction γ are both real and independent of each other. The NLO Lagrangian

is

LNLO = LLO +
C0

2
(α̇2 sin2 β + β̇2) + 4ϕ2

2γ̇α̇ cos β , (3.9)

LLO =
1

2
ϕ̇0

2 + ϕ̇2
2 + ϕ2

2γ̇
2 − ω2

0

2
ϕ2

0 −
ω2

2

4
ϕ2

2 . (3.10)

The Hamiltonian and eigenenergies have been derived [13]

HNLO = HLO +
1

2C0

(
1

sin2 β
(pα − 2l̂2 cos β)2 + p2

β

)
, (3.11)

ENLO(n0, n2, l2, l) = ω0(n0 +
1

2
) +

ω2

2
(2n2 + |l2|+ 1) +

1

2C0

(
l(l + 1)− (2l2)2

)
,

(3.12)

where l̂2 is defined as l̂2 = −i∂γ, which is the operator of the azimuthal component

of angular momentum. The corresponding quantum number is denoted by l2.

Indeed, the first two terms in Eq.3.12 represent the eigenenergy of the quadrupole

vibration of the axially deformed nuclei. Both are of order O(Ω), and (n0, n2, l2)

are integer quantum numbers that determines the vibrational state (n0 = 0, 1, 2, · · · ;

n2 = 0, 1, 2, · · · ; l2 = 0,±1,±2, · · · ). The variation of n0 represents β-vibration

excitations corresponding to β-band, and variations of n2 and l2 signals excitations of

γ-vibration with respect to γ-band. The third term is the eigenenergy of rotational

excitations, which is of order O(ξ). Above each vibrational state there is a rotational

band. The moment of inertia is the same for all vibrational states at this order.

However, soon we will this is only true at NLO. In NNLO corrections, the moment
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of inertia will be altered through the rotation-vibration coupling. We will use the

NLO eigenenergy and Hamiltonian to calculate the NNLO spectrum by perturbation

theory.

The NNLO Lagrangian that includes all possible coupling ways between rotation

and vibration is [13]

LNNLO = LNLO + 4|φ2|2E2
z + ∆LNNLO , (3.13)

∆LNNLO = D0(E+E−)ϕ2
0 + F0(E+E−)ϕ̇0

2

+D1ϕ0(φ2E
2
− + φ−2E

2
+) + F1ϕ̇0(E2

+Dtφ−2 + E2
−Dtφ+2)

+D2(E+E−)|φ2|2 + F2(E+E−)|Dtφ2|2 . (3.14)

Each term in ∆LNNLO has the order of magnitude O(ξ2/Ω), making the undetermined

coefficients scale as

D0 ∼ D1 ∼ D2 ∼ 1 ,

F0 ∼ F1 ∼ F2 ∼ Ω−2 . (3.15)

Again, the correctness of the scaling relations should be validated by fitting to the

experimental level schemes. Now we substitute E+ and E− in Eq.3.14 by Euler angles

α and β, and rewrite the entire NNLO Lagrangian

LNNLO = LNLO + 4ϕ2
2α̇

2 cos2 β + ∆LNNLO , (3.16)

∆LNNLO = D0(α̇2 sin2 β + β̇2)ϕ2
0 + F0(α̇2 sin2 β + β̇2)ϕ̇0

2

+D1ϕ0

(
2(α̇2 sin2 β − β̇2)ϕ2 cos γ + 4α̇β̇ sin βϕ2 sin γ

)
+ F1ϕ̇0

(
2(α̇2 sin2 β − β̇2)(ϕ̇2 cos γ − ϕ2γ̇ sin γ)

+ 4α̇β̇ sin β(ϕ̇2 sin γ + ϕ2γ̇ cos γ)
)

+D2(α̇2 sin2 β + β̇2)ϕ2
2 + F2(α̇2 sin2 β + β̇2)(ϕ̇2

2 + ϕ2
2γ̇

2) . (3.17)
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It is complicated to perform the Legendre transformation rigorously with ∆LNNLO.

In the next section we will apply Fukuda’s perturbative inversion method and obtain

the Hamiltonian. Fukuda’s method essentially adopts the idea of perturbation.

3.2 Fukuda’s inversion method

Now we introduce Fukuda’s inversion method [41] and see how it works for our

example. First, let us see what the conjugate momenta are in NNLO,

pϕ0 = ϕ̇0 +
∂∆LNNLO

∂ϕ̇0

,

pϕ2 = 2ϕ̇2 +
∂∆LNNLO

∂ϕ̇2

,

pγ = 2ϕ2
2γ̇ + 4ϕ2

2α̇ cos β +
∂∆LNNLO

∂γ̇
,

pα = C0α̇ sin2 β + 4ϕ2
2γ̇ cos β + 8ϕ2

2α̇ cos2 β +
∂∆LNNLO

∂α̇
,

pβ = C0β̇ +
∂∆LNNLO

∂β̇
. (3.18)

To compute the Hamiltonian, the heart procedure in Legendre transformation is

to conduct the inversion from velocities to conjugate momenta. As is emphasized

previously this is clearly not an easy task in our case, because the velocities mix

together in ∆LNNLO and are quadratic in order.

Fukuda et al. developed an perturbative approach to deal with such sort

of inversion in Legendre transformation, which was initially intended to tackle

chiral symmetry breaking problems in Quantum Chromodynamics and Quantum

Electrodynamics [42, 43]. It is soon applied to a wide range of topics, such as

equilibrium BCS theory of superconductivity [44], density function theory [41], and

discontinuous phase transitions [45]. Essentially, Fukuda’s inversion method only

counts in the LO terms in conjugate momenta, and treats the higher-order terms
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perturbatively by organizing the terms with the same order of magnitude together

into one equation. For the generalized formalism of Fukuda’s inversion method, the

reader can refer to Ref. [41]. Here we will illustrate it through directly applying it to

the derivation of NLO Hamiltonian first, and the NNLO Hamiltonian follows next.

We start from a power counting on each term in the right-hand side in Eq.3.18.

The LO terms scale as

pϕ0 ∼ ϕ̇0 ∼ Ω1/2 ,

pϕ2 ∼ ϕ̇2 ∼ Ω1/2 ,

pγ ∼ ϕ2
2γ̇ ∼ 1 ,

pα ∼ C0α̇ ∼ 4ϕ2
2γ̇ cos β ∼ 1 ,

pβ ∼ C0β̇ ∼ 1 . (3.19)

Physically pϕ0 , pϕ2 are momenta, and pγ, pα, pβ are angular momenta. They have the

energy scale ~ (which is ∼ 1 in natural units). Also note γ should change as eitELO

with respect to time and γ ∼ 1, so γ̇ must scale as

γ̇ ∼ ELO ∼ Ω . (3.20)
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which is consistent with Eq.3.19. The scaling of higher-order terms is

∂∆LNNLO

∂ϕ̇0

∼ Ω1/2

(
ξ

Ω

)2

,

∂∆LNNLO

∂ϕ̇2

∼ Ω1/2

(
ξ

Ω

)2

,

4ϕ2
2α̇ cos β ∼ ξ

Ω
,

∂∆LNNLO

∂γ̇
∼

(
ξ

Ω

)2

,

8ϕ2
2α̇ cos2 β ∼ ∂∆LNNLO

∂α̇
∼ ξ

Ω
,

∂∆LNNLO

∂β̇
∼ ξ

Ω
. (3.21)

One must realize that the terms that have the same order in the Lagrangian no

longer necessarily lead to the same order of magnitude in momenta. For instance,

in pγ, 4ϕ2
2α̇ cos β is of NLO, while in pα, 4ϕ2

2γ̇ cos β is of LO. Both of them result

from the derivative of the term 4ϕ2
2γ̇α̇ cos β in the NLO Lagrangian. This is simply

because the derivatives are regarding to velocities of different scales (which are α̇ and

γ̇ here).

Therefore, to decompose the velocities into components in different orders of

magnitude and label them in a systematical way become necessary, as follows

ϕ̇0 = ϕ̇0
(0) + ϕ̇0

(1) + ϕ̇0
(2) + . . . ,

ϕ̇2 = ϕ̇2
(0) + ϕ̇2

(1) + ϕ̇2
(2) + . . . ,

γ̇ = γ̇(0) + γ̇(1) + γ̇(2) + . . . ,

α̇ = α̇(0) + α̇(1) + α̇(2) + . . . ,

β̇ = β̇(0) + β̇(1) + β̇(2) + . . . . (3.22)

It is assumed that ẋ(0) has the same order of magnitude with ẋ and is of leading order.

Higher-order velocities scale their orders of magnitude with the following recursive
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relation

ẋ(i+1) ∼ ẋ(i) ξ

Ω
. (3.23)

Note that we need to truncate each line in Eq.3.22 at a certain order, and not each

velocity should be truncated at the same order of magnitude. We take the derivation

of NLO Hamiltonian as an example first.

HNLO = pϕ0ϕ̇0 + pϕ2ϕ̇2 + pγ γ̇ + pαα̇ + pββ̇ − LNLO . (3.24)

The Hamiltonian is accurate up to O(ξ). Thus, ϕ̇0, ϕ̇2 and γ̇ should be truncated

after the second term, whereas we only need to keep the first term in α̇ and β̇. The

Hamiltonian can be rewritten as

HNLO = pϕ0(ϕ̇0
(0) + ϕ̇0

(1)) + pϕ2(ϕ̇2
(0) + ϕ̇2

(1))

+ pγ(γ̇
(0) + γ̇(1)) + pαα̇

(0) + pββ̇
(0) − LNLO . (3.25)

Furthermore, we need to perform the inversion from Eq.3.18, i.e. express the velocities

in terms of the momenta. According to Fukuda’s inversion method, only leading-order

terms in the right-hand side of Eq.3.18 should be kept for the inversion,

pϕ0 = ϕ̇0
(0) ,

pϕ2 = 2ϕ̇2
(0) ,

pγ = 2ϕ2
2γ̇

(0) ,

pα = C0α̇
(0) sin2 β + 4ϕ2

2γ̇
(0) cos β ,

pβ = C0β̇
(0) . (3.26)
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According to the principle of perturbation theory, the higher-order terms should

satisfy the sets of equation

0 = ϕ̇0
(1) ,

0 = 2ϕ̇2
(1) ,

0 = 2ϕ2
2γ̇

(1) + 4ϕ2
2α̇

(0) cos β ,

0 = C0α̇
(1) sin2 β + 4ϕ2

2γ̇
(1) cos β + 8ϕ2

2α̇
(0) cos2 β +

(
∂∆LNNLO

∂α̇

)(0)

,

0 = C0β̇
(1) +

(
∂∆LNNLO

∂β̇

)(0)

. (3.27)

i.e. they are totally negligible compared to the LO terms, but non-negligible between

themselves. According to Eq.3.26 and Eq.3.27, the inversion from velocities to

momenta is

ϕ̇0
(0) = pϕ0 ,

ϕ̇2
(0) =

1

2
pϕ2 ,

γ̇(0) =
pγ

2ϕ2
2

,

α̇(0) =
1

C0 sin2 β
(pα − 2pγ cos β) ,

β̇(0) =
1

C0

pβ . (3.28)

In addition, it is in fact sufficient to use the first three equations in Eq.3.27, because

the last two equations about α̇(1) and β̇(1) will lead to higher-order terms than NNLO

in the Hamiltonian. Concrete forms of the derivatives of ∆LNNLO turn out actually

irrelevant to the final Hamiltonian. The velocities in the Lagrangian Eq.3.9, Eq.3.10
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should also be replaced with Eq.3.22,

LNLO =
1

2
ϕ̇0

2 + ϕ̇2
2 + ϕ2

2γ̇
2 − ω2

0

2
ϕ2

0 −
ω2

2

4
ϕ2

2

+
C0

2
(α̇2 sin2 β + β̇2) + 4ϕ2

2γ̇α̇ cos β

=
1

2
(ϕ̇0

(0))2 + ϕ̇0
(0)ϕ̇0

(1) + (ϕ̇2
(0))2 + 2ϕ̇2

(0)ϕ̇2
(1)

+ ϕ2
2

(
(γ̇(0))2 + 2γ̇(0)γ̇(1)

)
− ω2

0

2
ϕ2

0 −
ω2

2

4
ϕ2

2

+
C0

2

(
(α̇(0))2 sin2 β + (β̇(0))2

)
+ 4ϕ2

2γ̇
(0)α̇(0) cos β . (3.29)

Note that the quadratic terms in the Lagrangian are also truncated up to NLO

whenever necessary. Put Eq.3.29 back into Eq.3.25,

HNLO = pϕ0(ϕ̇0
(0) + ϕ̇0

(1)) + pϕ2(ϕ̇2
(0) + ϕ̇2

(1))

+ pγ(γ̇
(0) + γ̇(1)) + pαα̇

(0) + pββ̇
(0)

− 1

2
(ϕ̇0

(0))2 − ϕ̇0
(0)ϕ̇0

(1) − (ϕ̇2
(0))2 − 2ϕ̇2

(0)ϕ̇2
(1)

− ϕ2
2

(
(γ̇(0))2 + 2γ̇(0)γ̇(1)

)
+
ω2

0

2
ϕ2

0 +
ω2

2

4
ϕ2

2

− C0

2

(
(α̇(0))2 sin2 β + (β̇(0))2

)
− 4ϕ2

2γ̇
(0)α̇(0) cos β . (3.30)

One can quickly match terms that cancel each other in Eq.3.30. Along with Eq.3.28,

the NLO Hamiltonian in terms of position and momentum is

HNLO =
1

2
p2
ϕ0

+
1

4
p2
ϕ2

+
p2
γ

4ϕ2
2

+
ω2

0

2
ϕ2

0 +
ω2

2

4
ϕ2

2

+
1

2C0 sin2 β
(pα − 2pγ cos β)2 +

1

2C0

p2
β . (3.31)

Note that pγ is exactly the same thing as l̂2 in Eq.3.11, both of which are the operator

of azimuthal component of angular momentum and quantized as pγ = l̂2 = −i∂γ.

The result of employing Fukuda’s method is the same with Eq.3.11, which was

obtained non-perturbatively and only truncated at NLO in the last step. This justifies
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our motivation to apply Fukuda’s method further to HNNLO. The procedures of

performing Legendre transformation and computing the Hamiltonian at NLO has

been largely simplified.

This is also true for the Hamiltonian at NNLO. We will again see that concrete

form of ∆LNNLO does not need to be cared in Legendre transformation. It is

unnecessary to write it out explicitly at this moment or to calculate its derivatives.

Instead, let us leave it as a whole in calculating the Hamiltonian. Similar to Eq.3.25,

we write out HNNLO in terms of the decomposed velocities Eq.3.22 that include one

additional order

HNNLO = pϕ0(ϕ̇0
(0) + ϕ̇0

(1) + ϕ̇0
(2)) + pϕ2(ϕ̇2

(0) + ϕ̇2
(1) + ϕ̇2

(2))

+ pγ(γ̇
(0) + γ̇(1) + γ̇(2)) + pα(α̇(0) + α̇(1)) + pβ(β̇(0) + β̇(1))− LNNLO . (3.32)

The Lagrangian LNNLO is

LNNLO =
1

2
(ϕ̇0

(0))2 + ϕ̇0
(0)ϕ̇0

(1) +
1

2
(ϕ̇0

(1))2 + ϕ̇0
(0)ϕ̇0

(2)

+ (ϕ̇2
(0))2 + 2ϕ̇2

(0)ϕ̇2
(1) + (ϕ̇2

(1))2 + 2ϕ̇2
(0)ϕ̇2

(2)

+ ϕ2
2

(
(γ̇(0))2 + 2γ̇(0)γ̇(1) + (γ̇(1))2 + 2γ̇(0)γ̇(2)

)
+
C0

2

((
(α̇(0))2 + 2α̇(0)α̇(1)

)
sin2 β +

(
(β̇(0))2 + 2β̇(0)β̇(1)

))
+ 4ϕ2

2γ̇
(0)α̇(0) cos β + 4ϕ2

2γ̇
(0)α̇(1) cos β + 4ϕ2

2γ̇
(1)α̇(0) cos β

− ω2
0

2
ϕ2

0 −
ω2

2

4
ϕ2

2 + 4ϕ2
2(α̇(0))2 cos2 β + ∆L

(0)
NNLO . (3.33)

Still, only terms up to O(ξ2/Ω) are kept and all the higher-order terms are truncated.

A large part of these terms have already been calculated in the NLO case Eq.3.30,

thus we simply write them together as HNLO in the final Hamiltonian. What we only

need to calculate are those new terms of NNLO which do not appear in HNLO. The
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NNLO Hamiltonian becomes

HNNLO =HNLO + pϕ0ϕ̇0
(2) + pϕ2ϕ̇2

(2) + pγ γ̇
(2) + pαα̇

(1) + pββ̇
(1)

− 1

2
(ϕ̇0

(1))2 − ϕ̇0
(0)ϕ̇0

(2) − (ϕ̇2
(1))2 − 2ϕ̇2

(0)ϕ̇2
(2)

− ϕ2
2

(
(γ̇(1))2 + 2γ̇(0)γ̇(2)

)
− C0α̇

(0)α̇(1) sin2 β − C0β̇
(0)β̇(1)

− 4ϕ2
2γ̇

(0)α̇(1) cos β − 4ϕ2
2γ̇

(1)α̇(0) cos β

− 4ϕ2
2(α̇(0))2 cos2 β −∆L

(0)
NNLO . (3.34)

Using the equations Eq.3.27 and Eq.3.28, we obtain

HNNLO =HNLO + pαα̇
(1) − ϕ2

2(γ̇(1))2 − C0α̇
(0)α̇(1) sin2 β

− 4ϕ2
2γ̇

(0)α̇(1) cos β − 4ϕ2
2γ̇

(1)α̇(0) cos β

− 4ϕ2
2(α̇(0))2 cos2 β −∆L

(0)
NNLO . (3.35)

After a few manipulation one finally gets

HNNLO =HNLO −∆L
(0)
NNLO . (3.36)

i.e., except for ∆L
(0)
NNLO, all other terms finally cancel each other. We see that the

form of ∆L
(0)
NNLO does not really enter our calculation, because the derivatives of it in

the conjugate momenta are of higher order than NNLO and can thus be neglected.

Moreover, the resulting NNLO Hamiltonian implies a fact that even if we do

not consider any coupling between vibration and rotation, but simply take into

account all kinetic terms up to NNLO, we are still able to get the same rotational-

vibrational spectrum as obtained by the NLO Hamiltonian. The presence of the

kinetic term 4|φ2|2E2
z in the NNLO Lagrangian does not affect the spectrum at all.

For completeness we should indeed include it in our Lagrangian, so that each kinetic

term constructed from the “building blocks” of the rotationally invariant Lagrangian

is taken into consideration.
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∆L
(0)
NNLO simply means that each velocity in Eq.3.17 is replaced by the LO inversion

using Eq.3.26. In the next section, we will see it is actually even more straightforward

not to replace the velocities with momenta when calculating the expectation values

with perturbation theory, because terms in ∆L
(0)
NNLO either have certain conserved

quantities that can be denoted by quantum numbers, or become zero in the first-

order perturbation.

3.3 Rotational-vibrational spectrum in next-to-

next-to-leading order

We have the NNLO Hamiltonian Eq.3.36, with ∆L
(0)
NNLO being

∆L
(0)
NNLO = D0

(
(α̇(0))2 sin2 β + (β̇(0))2

)
ϕ2

0

+ F0

(
(α̇(0))2 sin2 β + (β̇(0))2

)
(ϕ̇0

(0))2

+ D1ϕ0

(
2
(
(α̇(0))2 sin2 β − (β̇(0))2

)
ϕ2 cos γ + 4α̇(0)β̇(0) sin βϕ2 sin γ

)
+ F1ϕ̇0

(0)
(

2
(
(α̇(0))2 sin2 β − (β̇(0))2

)
(ϕ̇2

(0) cos γ − ϕ2γ̇
(0) sin γ)

+4α̇(0)β̇(0) sin β(ϕ̇2
(0) sin γ + ϕ2γ̇

(0) cos γ)
)

+ D2

(
(α̇(0))2 sin2 β + (β̇(0))2

)
ϕ2

2

+ F2

(
(α̇(0))2 sin2 β + (β̇(0))2

) (
(ϕ̇2

(0))2 + ϕ2
2(γ̇(0))2

)
. (3.37)

We need to solve the eigenenergy of the NNLO Hamiltonian, and see what

the rotational-vibrational energy spectrum at NNLO is. The basic idea is still

perturbation theory.

Let us first look at what the expression
(
(α̇(0))2 sin2 β+ (β̇(0))2

)
is by substituting

α̇(0) and β̇(0) with Eq.3.26

(α̇(0))2 sin2 β + (β̇(0))2 =
1

C2
0

(
1

sin2 β
(pα − 2pγ cos β)2 + p2

β

)
. (3.38)
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The total angular momentum Q has been proved to be a conserved quantity for the

axially deformed nuclei [13]

Q2 =
1

sin2 β
(pα − 2pγ cos β)2 + p2

β + (2l2)2 . (3.39)

Therefore Eq.3.38 equals

(α̇(0))2 sin2 β + (β̇(0))2 =
1

C2
0

(
Q2 − (2l2)2

)
, (3.40)

i.e. no matter how the quantum number l2 changes,
(
(α̇(0))2 sin2 β + (β̇(0))2

)
will

always have the expectation value

〈(α̇(0))2 sin2 β + (β̇(0))2〉 =
1

C2
0

(
Q2 − (2l2)2

)
=

1

C2
0

(
l(l + 1)− (2l2)2

)
, (3.41)

where l is the quantum number of total angular momentum. Furthermore, as

the Nambu-Goldstone modes and quadrupole fields have been parameterized to be

independent with each other, we can calculate their correspondent expectation values

separately as long as they appear in multiplication. The solutions to ϕ0 and ϕ2, γ are

nothing but the solutions to 1-dimensional and 2-dimensional harmonic oscillators.

The eigenenergies of the vibrations in NLO have been given in Eq.3.12. According

to quantum harmonic oscillator theory, we have the following expectation values for

the velocity and position and their quadratics

〈ϕ0〉 = 〈ϕ̇0
(0)〉 = 0 , (3.42)
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and

〈1
2
ω2

0ϕ
2
0〉 =

1

2
ω0(n0 +

1

2
) ,

〈1
2
p2
ϕ0
〉 =

1

2
ω0(n0 +

1

2
) ,

〈1
4
ω2

2ϕ
2
2〉 =

1

4
ω2(2n2 + |l2|+ 1) ,

〈1
4
p2
ϕ2

+
p2
γ

4ϕ2
2

〉 =
1

4
ω2(2n2 + |l2|+ 1) . (3.43)

Thus, the expectation values of the relative terms in the Hamiltonian are

〈ϕ2
0〉 =

1

ω0

(n0 +
1

2
) ,

〈(ϕ̇0
(0))2〉 = ω0(n0 +

1

2
) ,

〈ϕ2
2〉 =

1

ω2

(2n2 + |l2|+ 1) ,

〈(ϕ̇2
(0))2 + ϕ2

2(γ̇(0))2〉 =
1

4
ω2(2n2 + |l2|+ 1) . (3.44)

Use Eq.3.44 in Eq.3.37, we immediately obtain the expectation value of L
(0)
NNLO

〈∆L(0)
NNLO〉 =

l(l + 1)− (2l2)2

C2
0

(D0

ω0

(n0 +
1

2
) +

D2

ω2

(2n2 + |l2|+ 1)

+F0ω0(n0 +
1

2
) +

1

4
F2ω2(2n2 + |l2|+ 1)

)
. (3.45)

Finally, it is straightforward for us treat ∆L
(0)
NNLO as a small perturbation to HNLO,

and the first-order perturbation gives us the following NNLO energy spectrum

ENNLO = ENLO − 〈∆L(0)
NNLO〉 . (3.46)

Here, ENLO has been given by Eq.3.12. It is trivial to rewrite −〈∆L(0)
NNLO〉 as ∆ENNLO,

so that

ENNLO = ENLO + ∆ENNLO . (3.47)
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The NNLO correction to the rotational-vibrational spectrum of deformed nuclei,

expressed by Eq.3.45, is the main result of this chapter. In the first-order

perturbation, the effect of NNLO correction to the NLO spectrum is just adjusting

the moment of inertia by a small amount. While the reciprocal of the original moment

of inertia is 1
C0

, it becomes 1
C0

(1− ε) after we consider the rotation-vibration coupling

as higher-order corrections for deformed nuclei, where ε (∼ O(ξ/Ω)) equals

ε =
2

C0

(D0

ω0

(n0 +
1

2
) +

D2

ω2

(2n2 + |l2|+ 1)

+F0ω0(n0 +
1

2
) +

1

4
F2ω2(2n2 + |l2|+ 1)

)
= R(n0 +

1

2
) + S(2n2 + |l2|+ 1) , (3.48)

where R and S are defined as

R =
2

C0

(
D0

ω0

+ F0ω0

)
,

S =
2

C0

(
D2

ω2

+
1

4
F2ω2

)
. (3.49)

As we see the modification depends on the vibrational band head of the deformed

nucleus. In other words, while the moment of inertia of rotation is the same for

a particular vibrational state, it is slightly different for different vibrational states.

This agrees with a simple view that a deformed nucleus at higher angular velocity

should exhibit a centrifugal stretching and thus a larger moment of inertia. There is

no reason for nuclei with different deformation to share the same moment of inertia.

Most importantly, most geometric models till now predict a reduced moment of

inertia in higher-order corrections to collective excitations [24], whereas our effective

theory is more flexible and allows the moment of inertia to either increase or decrease.

In fact, it will be shown in the next section that in realistic situations, deformed nuclei

at higher vibrational excitation states do have a larger moment of inertia, rather than

a reduced one as predicted by the general collective models.
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The amount of modification is decided by the vibrational quantum numbers

(n0, n2, l2). It is essentially a linear combination of the six constants ω0, ω2, D0,

F0, D2 and F2. As in Eq.3.49, they can be redefined into new constants R and S,

which can be determined straightforwardly by fitting to data. In addition, though in

the first-order perturbation approximation the other two constants D1 and F1 do not

influence the spectrum, it is no longer the case in the second-order perturbation. This

is because ϕ0 and ϕ̇0 will both appear as quadratics in the second-order perturbation

calculation, which no longer lead to zero expectation values.

3.4 Comparison with level schemes

In this section, we pick several typical level schemes of even-even deformed nuclei

to illustrate the effect of NNLO correction to the rotational-vibrational spectrum of

form Eq.3.48 derived by our effective theory. We are not going to determine the value

of the coefficients by fitting to data, but rather just present a qualitative explanation.

First, let us look at the level scheme of 168Er shown in Figure 3.1. The first three

bands are all related to the collective excitations of 168Er. Band 2 is the ground-state

band representing the vibrational state (n0, n2, l2) = (0, 0, 0). Band 1 is the β-band

at the vibrational excitation state (1, 0, 0), and Band 3 is the γ-band at (0, 0, 1). The

Non-band levels are irrelevant for our discussion because they are not collective in

nature.

Upon each vibrational state, there is a rotational band. We calculate (E4+−E2+)

for each rotational band and show the results in Table 3.1. Theoretically according

to the NLO spectrum in our effective theory (E4+ − E2+) is

E4+ − E2+ =
20− 6

2C0

, (3.50)
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Figure 3.1: Level scheme of 168Er. Spin and parity as indicated, energies
in keV. (First three bands. From National Nuclear Data Center, URL:
http://www.nndc.bnl.gov/chart/)
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Table 3.1: (E4+ − E2+) for first 3 vibrational states of 168Er (in keV)

vibrational state Band 2 (0, 0, 0) Band 3 (0, 0, 1) Band 1 (1, 0, 0)

E4+ − E2+ 184.3 173.5 134.8

which is equivalent for each vibrational state.

However, Table 3.1 reveals that different vibrational states do not have the same

energy gap between the 4+ and 2+ states. This indicates that the C0 in Eq.3.50,

which is proportional to the moment of inertia, is changing among each vibrational

state. Moreover, the higher the vibrational excitation energy is, the larger C0 is,

hence the larger the moment of inertia of the deformed nucleus is. This can be

explained by our effective theory. Remember C0 has been shown to be modified

approximately as C0(1 + ε), where ε is given by Eq.3.48. The moment of inertia

predicted by our effective theory indeed has a growing tendency for higher vibrational

excitation. The undetermined parameters in ε must be positive when taken together

as ε. If we compare the relative deviation with the power counting estimates (shown

in Table 3.2), they are also found to be of the same order of magnitude.

Likewise, a careful examination of 162Dy also uncovers this feature, whose level

scheme is shown in Figure 3.2. Band 1 is the ground-state band (0, 0, 0). Band 2 is the

γ-band at the vibrational excitation state (0, 0, 1), and Band 3 is the β-band (1, 0, 0).

The values of (E4+−E2+) are shown in Table 3.3. The comparison of the experimental

observation of relative deviation of the moment of inertia at excitation states with

Table 3.2: Relative deviation of moment of inertia at vibrational excitation states
from the ground-state value for 168Er

vibrational state Band 2 (0, 0, 0) Band 3 (0, 0, 1) Band 1 (1, 0, 0)

relative deviation 0 6% 27%

ξ
Ω

– 10% 7%
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Figure 3.2: Level scheme of 162Dy. Spin and parity as indicated, energies
in keV. (First three bands. From National Nuclear Data Center, URL:
http://www.nndc.bnl.gov/chart/)
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Table 3.3: (E4+ − E2+) for first 3 vibrational states of 162Dy (in keV)

vibrational state Band 1 (0, 0, 0) Band 2 (0, 0, 1) Band 3 (1, 0, 0)

E4+ − E2+ 185 172.8 120.8

the power counting estimates is given in Table 3.4. They again demonstrate good

agreement.

To pursue a further verification of the power counting Eq.3.15, Eq.3.4 and a higher

accuracy, one can numerically fit Eq.3.45 to the data as what has been done in the

last chapter.

Till now, the effective theory at NNLO has been studied for even-even nuclei,

whose ground states are invariant under time reversal. For odd-mass nuclei, new

terms which are not invariant under time reversal will enter the Lagrangian. This

makes the rotational-vibrational spectrum distinct from even-even nuclei. They will

be studied in next chapter.

Table 3.4: Relative deviation of moment of inertia at vibrational excitation states
from the ground-state value for 162Dy

vibrational state Band 1 (0, 0, 0) Band 2 (0, 0, 1) Band 3 (1, 0, 0)

relative deviation 0 7% 35%

ξ
Ω

– 9% 6%
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Chapter 4

Nuclei with Finite Ground-state

Spins

In last two chapters, the Lagrangians of even-even nuclei are invariant under time

reversal at all orders, because even-even nuclei have zero ground-state spin. The

minimum value of the angular momentum projection quantum number K in Eq.1.1

is zero, so that the intrinsic spin does not have to be explicitly considered. This also

brings about simplicity in constructing the Lagrangian in that the total order of time

derivative in any rotationally invariant term built can only be even, thus ruling out

the odd-order terms.

Odd-mass nuclei, on the other hand, usually have half-integer spin in their ground

state. The minimum value of K in Eq.1.1 is usually 1/2, and spin-orbit coupling

requires l must also be half-integer. The ground states of odd nuclei are no longer

invariant under time reversal. One of the consequences of the breakdown of time-

reversal invariance is, in addition to all the terms already included in even-even

nuclei Lagrangian, new terms with odd order of time derivative can come in as time-

invariance breaking terms. We have already seen that in the Nambu-Goldstone modes

of odd nuclei, a Wess-Zumino term that consists of one time derivative appears in the

Lagrangian [13]. It contains a quantum number q that characterizes the spin state.
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The resulting rotational bands of odd nuclei are exactly of the form Eq.1.1 with the

q being K.

In this chapter, we take a closer look at odd nuclei in our effective theory by adding

new rotationally invariant terms into the Lagrangian and seeing how they change

the rotational-vibrational spectrum. These terms are related to the quadrupole

vibrational degrees of freedom and are not invariant under time reversal. The

individual Nambu-Goldstone modes that lead to the rotational band of odd nuclei

have been studied [13]. Essentially, we are studying odd deformed nuclei at NLO

that couples the quadrupole vibrations to Nambu-Goldstone modes. The NNLO

corrections resulting from rotation-vibration interaction are concerned here, which

can be investigated in a similar way as in even-even nuclei. We will see the collective

excitations of odd nuclei even at NLO displays many interesting properties that even-

even nuclei do not have.

4.1 Next-to-leading-order Lagrangian

In odd nuclei, terms that contain odd order of time derivative in total can enter the

Lagrangian. In terms of the quadrupole fields, the simplest terms one can construct

from the “building blocks” of rotationally invariant Lagrangian are φ0Dtφ0, φ2Dtφ−2

and φ−2Dtφ2. We primarily study the effects of these terms in the following, whereas

the results of pure Nambu-Goldstone modes for odd nuclei will also be used.

In last chapter, φ2 is decomposed into a radial part and an angular part in a polar

coordinate system. It turns out easier to decompose it on Cartesian coordinates

here (mostly due to the simplicity in gauge transformation which we will see in next

section).

φ2 = x+ iy ,

φ−2 = x− iy. (4.1)
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Thus,

φ2Dtφ−2 = xẋ+ yẏ − i(xẏ − yẋ) + 2iEz(x
2 + y2) ,

φ−2Dtφ2 = xẋ+ yẏ + i(xẏ − yẋ)− 2iEz(x
2 + y2) ,

φ0Dtφ0 = φ0φ̇0 =
1

2
∂t(φ

2
0) . (4.2)

Only the linear combinations of φ2Dtφ−2 and φ−2Dtφ2 will yield purely real value. A

power counting on them gives

φ2Dtφ−2 ∼ φ−2Dtφ2 ∼ φ0Dtφ0 ∼ 1 . (4.3)

Referring to Eq.2.7, we immediately write out the NLO Lagrangian that includes

Nambu-Goldstone modes. For simplicity the trivial potential is ignored temporarily

until we obtain the final Hamiltonian.

L
(oo)
LO = (Dtφ2)(Dtφ−2) +

1

2
φ̇0

2
+
A

2
∂t(φ

2
0)

+
B

2
(φ2Dtφ−2 + φ−2Dtφ2) +

iB̃

2
(φ2Dtφ−2 − φ−2Dtφ2) , (4.4)

L
(oo)
NLO = L

(oo)
LO +

C0

2
(α̇2 sin2 β + β̇2)− qα̇ cos β . (4.5)

The term A
2
∂t(φ

2
0) is a total time derivative which can be removed from the

Lagrangian. However, we keep it at this moment and will later see that it can

also be eliminated by a gauge transformation, without entering the final results.

Apparently φ2Dtφ−2 and φ−2Dtφ2 are also related to the quadrupole vibrational

degrees of freedom. Implicitly they can involve other degrees of freedom at the same

energy scale such as spin, pairing etc. (In the final results we will see it’s more likely

to be connected with spin). B, B̃ and A must scale as

B ∼ B̃ ∼ A ∼ Ω . (4.6)
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Note that although (Dtφ2)(Dtφ−2), φ2Dtφ−2 and φ−2Dtφ2 are all of LO, after being

expanded in either polar coordinates or Cartesian coordinates, all of them will produce

NLO and NNLO kinetic terms, as in even-even nuclei previously. The Lagrangian

after the expansion is

L
(oo)
LO = (ẋ2 + ẏ2) +

1

2
φ̇0

2
+
A

2
∂t(φ

2
0)

+B(xẋ+ yẏ) + B̃(xẏ − yẋ) , (4.7)

L
(oo)
NLO = L

(oo)
LO − 4Ez(xẏ − yẋ)− 2B̃(x2 + y2)Ez

+
C0

2
(α̇2 sin2 β + β̇2)− qα̇ cos β +(((((((

4(x2 + y2)E2
z . (4.8)

The last term in Eq.4.8 can be neglected because it is of NNLO. One can identify

that xẏ − yẋ is the angular momentum equivalent to ϕ2
2γ̇ in the polar coordinates.

Therefore, except for the terms that contain B or B̃, everything is exactly the same

with the NLO Lagrangian Eq.3.9 and Eq.3.10 of even-even nuclei. We are mainly

interested here in the terms with the constant B or B̃.
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4.2 Rotational-vibrational spectrum in next-to-

leading order

To derive the Hamiltonian, we again employ Fukuda’s inversion method. We start

from the conjugate momenta

p0 = φ̇0 + Aφ0 ,

px = 2ẋ+Bx− B̃y − 4yα̇ cos β ,

py = 2ẏ +By + B̃x+ 4xα̇ cos β ,

pα = 4 cos β(xẏ − yẋ) + 2B̃ cos β(x2 + y2)

+C0α̇ sin2 β − q cos β ,

pβ = C0β̇ . (4.9)

The LO approximations for them are

p0 = φ̇0
(0)

+ Aφ0 ,

px = 2ẋ(0) +Bx− B̃y ,

py = 2ẏ(0) +By + B̃x ,

pα = 4 cos β(xẏ(0) − yẋ(0)) + 2B̃ cos β(x2 + y2)

+C0α̇
(0) sin2 β − q cos β ,

pβ = C0β̇
(0) , (4.10)
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with the NLO approximations being

0 = φ̇0
(1)
,

0 = 2ẋ(1) − 4yα̇(0) cos β,

0 = 2ẏ(1) + 4xα̇(1) cos β,

0 = 4 cos β(xẏ(1) − yẋ(1)) + C0α̇
(1) sin2 β,

0 = C0β̇
(1) . (4.11)

From Eq.4.10, Fukuda’s inversion yields

φ̇0
(0)

= p0 − Aφ0 ,

ẋ(0) =
1

2
(px −Bx+ B̃y) ,

ẏ(0) =
1

2
(py −By − B̃x) ,

α̇(0) =
1

C0 sin2 β

(
pα − 4 cos β(xẏ(0) − yẋ(0))

−2B̃ cos β(x2 + y2) + q cos β
)
,

β̇(0) =
1

C0

pβ . (4.12)

A further substitution in α̇(0) simplifies it into

α̇(0) =
1

C0 sin2 β

(
pα +

(
q − 2(xpy − ypx)

)
cos β

)
. (4.13)
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The Lagrangian truncated up to NLO is

L
(oo)
NLO =

1

2

(
φ̇0

(0))2
+ Aφ0φ̇0

(0)

+
((
ẋ(0)
)2

+
(
ẏ(0)
)2

+ 2ẋ(0)ẋ(1) + 2ẏ(0)ẏ(1)
)

+B(xẋ(0) + xẋ(1) + yẏ(0) + yẏ(1))

+B̃(xẏ(0) + xẏ(1) − yẋ(0) − yẋ(1))

+4α̇(0) cos β(xẏ(0) − yẋ(0)) + 2B̃α̇(0) cos β(x2 + y2)

+
C0

2

(
(α̇(0)

)2
sin2 β +

(
β̇(0))2

)
− qα̇(0) cos β . (4.14)

Then, the NLO Hamiltonian is

H
(oo)
NLO = p0(φ̇0

(0)
+ φ̇0

(1)
) + px(ẋ

(0) + ẋ(1)) + py(ẏ
(0) + ẏ(1))

+pαα̇
(0) + pββ̇

(0) − L(oo)
NLO

=
1

2
(p0 − Aφ0)2 +

1

4
(px −Bx+ B̃y)2 +

1

4
(py −By − B̃x)2

+
1

2C0

(
1

sin2 β

(
pa +

(
q − 2(xpy − ypx)

)
cos β

)2

+ p2
β

)
. (4.15)

Note that xpy−ypx is the operator of orbital angular momentum in the z-axis, which

is just pγ in Eq.3.31. It can be concluded firstly that the Hamiltonian that describes

the rotation is essentially the same with Eq.3.31, except that the quantum number q

derived from the Wess-Zumino term LWZ is superimposed onto the azimuthal angular

momentum quantum number associated with the quadrupole vibration. As q is the

spin of the band head, this effect is simply equivalent to a superposition of the

intrinsic angular momentum and orbital angular momentum in the same direction.

The introducing of quadrupole degrees of freedom into odd deformed nuclei not only

leads to vibrational bands, but also couples the vibration to the intrinsic spin to some

extent.

Finally we look at the kinetic terms in the Hamiltonian that describes the
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quadrupole vibration, which is

H
(oo)
VB =

1

2
(p0 − Aφ0)2 +

1

4
(px −Bx+ B̃y)2 +

1

4
(py −By − B̃x)2 . (4.16)

A phase function

λ(x, y, φ0) =
B

2
(x2 + y2) +

A

2
φ2

0 , (4.17)

can be defined to gauge away unnecessary parameters in the Hamiltonian, so that

~∇λ = (Bx, By, Aφ0) . (4.18)

Implementing the gauge transformation on Eq.4.16 with Eq.4.18 yields

H
(oo)
vb =

1

2
p2

0 +
1

4
(px + B̃y)2 +

1

4
(py − B̃x)2 . (4.19)

Rewriting B̃ as ω′, expanding the quadratics and putting back the potential Eq.3.2 ,

we have

H
(oo)
vb =

1

2
p2

0 +
1

4
p2
x +

1

4
p2
y

− 1

2
ω′(xpy − ypx) +

1

4
ω′2(x2 + y2)

+
1

2
ω2

0ϕ
2
0 +

1

4
ω2

2(x2 + y2) . (4.20)

Recall that xpy − ypx is azimuthal angular momentum operator and equal to pγ or

l2. The quadratic term of ω′ alters the potential in the x-y plane, with the angular

frequency becoming (ω′2 + w2
2)1/2 instead of w2.

The Hamiltonian Eq.4.20 yields the vibrational eigenenergy

E
(oo)
vb = ω0(n0 +

1

2
) +

√
ω′2 + ω2

2

2
(2n2 + |l2|+ 1)− 1

2
ω′l2 . (4.21)
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If we further incorporate the rotational Hamiltonian with Eq.4.15, we come to the

main result of this chapter, namely the energy spectrum

E
(oo)
vb = ω0(n0 +

1

2
) +

√
ω′2 + ω2

2

2
(2n2 + |l2|+ 1)− 1

2
ω′l2

+
1

2C0

(
l(l + 1)− (q − 2l2)2

)
. (4.22)

This spectrum can be regarded as the rotational-vibrational spectrum of odd nuclei.

Compared to the spectrum of even-even nuclei, there are two additional characters

in the odd nuclei bands. In the rotational band, the occurrence of finite ground-state

spin gives rise to a coupling between the spin and the azimuthal angular momentum

associated with the vibration. In the vibrational band, while the angular frequency

of the potential is enlarged by a constant, the spacing between adjacent levels is

compressed. The degree of compression linearly depends on the azimuthal quantum

number l2.

If we remove the harmonic oscillator potential, the energy spectrum becomes

E
(oo)
landau =

1

2
ω′(2n2 + |l2| − l2 + 1) +

1

2C0

(
l(l + 1)− (q − 2l2)2

)
. (4.23)

The vibrational band is nothing but the well-known Landau levels. The physical

meaning of ω′ is that it resembles the magnitude of a constant magnetic field acting

on the deformed nuclei. This is not surprising because ω′ is a constant in front of the

one time-derivative term, i.e. velocity, in the Lagrangian. An interaction that depends

on velocities is a Lorentz force caused by magnetic fields. The gauge transformation

performed in the calculation designates a different choice of the vector potential,

which is ensured by the gauge invariance of magnetic field. Hence, ω′ represents a

measure of the magnetic field.

While there is no external magnetic field exerted on the deformed nucleus, an

internal magnetic field can arise from the orbital motion of nucleons around nucleus.

For odd nuclei there is always an excess nucleon whose spin or orbital motion is not
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offset by others, thus inducing a charged orbital motion of the center of mass of the

nucleus.

4.3 Comparison with level schemes

Let us take a look at the experimental data of odd-mass nuclei. Again, only

qualitative analysis is given here. The level scheme of 241Pu is shown in Figure 4.1,

and of 237U in Figure 4.2.

For 241Pu, the spacings between the band heads of the ground-state band (Band 1)

and the lowest two vibrational excitation band (Band 2 and Band 3) are separate by

only about 160 keV, which is small in contrast to ∼ 1 MeV in even-even nuclei. The

implication is the energy gaps between adjacent vibrational states is compressed.

This property is even more clear in the level scheme of 237U, where the spacings

between all the adjacent vibrational excitation states in the four bands are around a

few tens of keV. The exhibition of high density of states in the vibrational spectrum

is indeed a feature of Landau levels.

Furthermore, in the Lagrangian of odd-mass nuclei, the time-odd terms are in the

leading order, which means the order of magnitude of their corrections is of the same

order with the quadrupole vibration. According to the level schemes of even-even

nuclei, the first vibrational excitation energies of 240Pu and 236U are at about 700 keV.

In the level schemes of 241Pu and 236U, the lowest-lying vibrational excitation energies

range from tens of keV to 200 keV, which differ with their even-even counterparts by

hundreds of keV. Indeed, the correction is of the same order of magnitude with the

vibrational excitation.

Our effective theory at NLO successfully accounts for some features of odd nuclei.

However, there are still a number of properties in the odd nuclei level schemes that

are not yet explained by the effective theory. For instance, Band 2 in the level scheme

of 241Pu (Figure 4.1) manifests a conspicuous splitting of the energy levels into two

branches. This effect, called signature splitting, is a widely observed phenomenon in
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Figure 4.1: Level scheme of 241Pu. Spin and parity as indicated, energies in keV.
(From National Nuclear Data Center, URL: www.nndc.bnl.gov/chart/)
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Figure 4.2: Level scheme of 237U. Spin and parity as indicated, energies in keV.
(From National Nuclear Data Center, URL: www.nndc.bnl.gov/chart/)

60



www.manaraa.com

rotational bands of odd-mass deformed nuclei [46, 47], and has been explained by the

deformed shell model (Nilsson model) [48].

Signature is a unique quantum number appearing in a deformed intrinsic

system [49]. It also has to do with a non-adiabatic correction, known as Coriolis

correction, in the rotational bands of odd-mass nuclei. The Coriolis correction is

especially significant and strong in band heads with spin q = 1/2, and very commonly

makes different rotational states mix together. This is still missed in our effective

theory.

61



www.manaraa.com

Chapter 5

Conclusions

To summarize, we have three major results following the high-order calculations

in the effective theory for deformed nuclei.

First, the NNLO corrections in Nambu-Goldstone modes is three powers of the LO

energy of the rotational state and yields higher accuracy in fitting with experimental

level schemes. More importantly, the order of magnitude of all the fitting parameters

proves to agree with the power counting estimates of our effective theory, and hence

partially validates our effective theory.

Second, the vibrations are coupled to the rotation at NNLO for even-even nuclei,

with the interaction between them being fully considered. As the eigenenergy

of the NLO effective Hamiltonian reproduces the well-known rotational-vibrational

spectrum derived by geometric collective models, the coupling of rotation and

vibration at NNLO creates a new effect. The moment of inertia of excited vibrational

states is able to deviate from ground-state value not only incrementally, but also

decrementally. While the geometric models predict a decreased moment of inertia at

higher excitation states, nature often puts it the other way. The amount of deviation

depends linearly on the quantum numbers specifying the vibrational band head, with

the scaling factors to be determined by fitting to data. The order of magnitude of

the deviation in experiments also confirms the estimates of power counting.

62



www.manaraa.com

Finally, odd-mass nuclei with finite ground-state spin are studied at NLO. Time-

odd terms that break the time-reversal symmetry can appear in the Lagrangian at this

order. This can be viewed as describing the interaction between the deformed nuclei

and a uniform magnetic field. For this reason, the resulting Hamiltonian appears to

have gauge fields. After superfluous parameters are gauged away, the time-odd terms

ultimately result in a correction term linear with the azimuthal quantum number in

the vibrational energy spectrum. The spacing between adjacent vibrational states

can be compressed by this correction, hence the spectrum exhibits a high density of

states in resemblance to Landau levels. This feature is visible in the experimental

level schemes of odd-mass nuclei. The rotational bands are similar to even-even nuclei,

except that the non-zero spin is coupled to the azimuthal angular momentum of the

quadrupole vibration.

Future interesting problems in the effective theory of deformed nuclei include

the study of terms involving second time-derivatives in Nambu-Goldstone modes,

the coupling of electromagnetic fields to Nambu-Goldstone modes, the coupling

of fermions associated with even higher-energetic degrees of freedom to Nambu-

Goldstone modes, and an effective field theory for deformed nuclei. As atomic

nuclei cover such rich phenomena and the effective theory provides us with a model-

independent description of them, both new challenges and new discoveries await.
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Appendix A

Higher-order Time Derivatives

In the previous chapters, all of the Lagrangians contain only the first-order

derivatives with respect to time. We know from the classical mechanics that to

describe the motion of a classical particle, position and velocity, i.e. time derivatives

up to first order, are sufficient. As long as all the positions and velocities are

simultaneously specified at a certain instant, the state of the system is considered as

completely determined in the sense that the subsequent state can be predicted [50].

However, a thorough examination of all the possible combinations of the “building

blocks” of a rotationally invariant Lagrangian in our effective theory inevitably invokes

one’s curiosity about terms such as (DtE+)(DtE−), φ2D
2
tφ−2 and so on. These terms

were not explored in previous chapters. They involve the second-order time derivatives

of either Nambu-Goldstone modes or quadrupole phonons.

Lagrangians involving second- or higher-order time derivatives have been in-

tensively studied in literatures. Generally, they are present in a wide variety of

physical problems as corrections to low-order-derivative theories. In general relativity,

quantum corrections that take the form of quadratics in curvature naturally contain

higher-order time derivatives of the metric [51, 52]. In the theory of cosmic string,

higher-order time derivatives occurs in the correction terms that arise from the

effective action of string motion over a curved world sheet and depend on the “rigidity”
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of the string [53, 54]. Another well-known example of theories with higher-order time

derivative is Dirac’s relativistic model of radiating electron [55].

Although high-order derivatives mostly appear as high-order corrections to a low-

order derivative theory, the ultimate consequences of the corrections are beyond

physicists’ original expectation. The high-order time derivative theories are subject

to many undesirable features, such as the absence of a low-energy bound, lack of

convergence in the limit of an infinitesimal coefficient, etc.. It can be summarized from

previous chapters that whenever a first-order time derivative term with a coefficient

scaling it is added to the effective Lagrangian as a small correction, the energy will

simply be perturbed by a small amount. The perturbation tends to be zero in the

limit that the scaling coefficient infinitely approaches zero. However, one can no longer

make this assumption and naively treat high-order time derivative terms added to the

Lagrangian in this way. The intuition that a high-order derivative term with a small

coefficient in front of it acts only as a perturbative correction to original solution is

incorrect, however small the coefficient is [56]. This unwelcome property is because

the new degrees of freedom introduced by high-order derivatives are unconstrained,

which is missing from a low-order derivative theory. A systematic method called

“perturbative constraints” has been developed to resolve this issue suffered by high-

order derivative theories [57]. It has been successfully applied to a number of cases

(Dirac’s electron, general relativity, cosmic string etc.) to avoid “runaway” solutions,

and render these high-order derivative theories self-consistent [56].

In addition to “perturbative constraints”, there is another class of high-order

derivative theories – nonlocal theories – that does not suffer the abovementioned

problems. Nonlocality usually occurs in low-energy effective theories, where the

effective action naturally contains higher-order derivatives resulting from time-

retarded interactions. It is recognized to be a fundamental property that all string

field theories possess. Ref. [58] has a very nice investigation and discussion about

nonlocality in string theory. It is also realized that a truncated series expansion

(with higher derivatives) of a nonlocal theory, with perturbative constraints explicitly
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imposed, ends up sharing the same solutions with the original full nonlocal theory [56].

The best known example is Wheeler-Feynman electrodynamics, where the constraint

that only solutions that are Taylor expandable in powers of v/c are permitted,

corresponds to the limit of infinite propagation speed of instantaneous interaction

in the original theory [59].

In the realm of effective theories, Lagrangians with higher-order derivatives

have also been proposed and profoundly studied in order to parameterize possible

deviations from the standard model. It has been proved that up to the energy

scale at the effective Lagrangian level, all the disturbing problems associated with

higher-derivative theories are absent [60]. This is indeed the case demonstrated in

the previous chapters. However, how the spectra of deformed nuclei will be corrected

at higher order by higher-order derivatives in the effective theory still arouses our

interest.

In order to see how higher derivatives bring about new effects in our effective

theory of deformed nuclei, one basically has two directions to go. First, a

formalism that deals with higher-derivative Lagrangian can be utilized to derive

the Hamiltonian. A formalism for this task – Ostrogradsky formalism – has been

long established [61]. Essentially, it treats all the time derivatives as independent

coordinates and performs a field transformation (namely, a canonical transformation)

on them. This treatment brings in additional degrees of freedom. The second way

is more straightforward, which is to apply the equations of motion to substitute the

higher-order derivative terms and reduce the order of derivatives of the Lagrangian.

Physically, these two approaches are expected to be equivalent, which has been

indicated in Ref. [60]. In this chapter we closely follow these two approaches.

The structure of this chapter is arranged as follows. First, the transformation

properties of terms with second-order derivatives are proved to satisfy the requirement

of constructing rotationally invariant Lagrangians. Then, a general theory that

handles higher-derivative Lagrangians is employed to eliminate the second-derivative

terms in our effective Lagrangian. This, however, leads to an unsatisfactory result for

73



www.manaraa.com

deformed nuclei, and is subject to further discussion. Furthermore, a new variable

transformation that maintains the time invariance of even-even nuclei is found. It can

be proved to be correct up to NLO in an adhoc way. Nevertheless, this transformation,

while derived purely mathematically, still needs meaningful physical interpretation.

A.1 Transformation properties

The transformation properties of the “building blocks” of a rotationally invariant

Lagrangian with only first-order derivatives have already been derived [13]. Here we

give the transformation properties of new “building blocks” that contains second-

order time derivatives.

First, let us look at second-order time derivatives of Nambu-Goldstone modes,

e.g. DtE+ and DtE−. The transformation rule of the covariant operator Dt is

D̃t = hDth
−1 , (A.1)

where h = exp(−iγĴz) is the arbitrary rotation operator around the symmetry axis

of the deformed nucleus, parameterized nonlinearly by the Euler angles. Thus, the

transformation properties of DtE± are

D̃tẼ+ = e−iγDte
iγe−iγE+ = e−iγDtE+ ,

D̃tẼ− = eiγDte
−iγeiγE− = eiγDtE− . (A.2)

Indeed, they have the desired transformation under a rotation around the symmetry

axis as expected. In addition to Nambu-Goldstone modes, the second-order covariant

derivative of quadrupole field D2
tφ is also well transformed, as shown below

D̃2
t φ̃ = hDth

−1hDth
−1hφ = hD2

tφ . (A.3)
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These transformation properties justify our motivation to include second-order

derivative terms into the effective Lagrangian of deformed nuclei. Surely, the

transformation rules can be easily generalized to terms with even higher-order(>2)

time derivatives.

A.2 Second-order derivatives in Nambu-Goldstone

modes

In this chapter, we investigate the higher-derivative Lagrangians that involve

DtE±, i.e. Nambu-Goldstone modes. Terms containing D2
tφ regarding the quadrupole

vibrational degrees of freedom are more complicated and not discussed here.

For odd nuclei, terms entering the effective Lagrangian are not time-reversal

invariant. They are E+DtE− and E−DtE+

E+DtE− = E+∂tE− + iEzE+E− ,

E−DtE+ = E−∂tE+ − iEzE+E− . (A.4)

Both of them are complex. Only the linear combinations of them yield purely real or

imaginary values

E+DtE− + E−DtE+ = E+∂tE− + E−∂tE+ = ∂t(E+E−) , (A.5)

E+DtE− − E−DtE+ = E+∂tE− − E−∂tE+ + 2iEzE+E−

= 2i(α̈β̇ sin β + α̇β̇2 cos β − α̇β̈ sin β)

−2iα̇ cos β(α̇2 sin2 β + β̇2)

= 2i(α̈β̇ sin β − α̇β̈ sin β − α̇3 sin2 β cos β) . (A.6)

Note that the sum of E+DtE− and E−DtE+ is just a total time derivative that’s

neglectable from the Lagrangian. Of interest is the subtraction of them, which should
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be included by the Lagrangian with a parameter scaling it.

L(oo) =
C0

2
(α̇2 sin2 β + β̇2)− qα̇ cos β

+
iC1

2
(E+DtE− − E−DtE+)

=
C0

2
(α̇2 sin2 β + β̇2)− qα̇ cos β

+C1(α̇3 sin2 β cos β + α̇β̈ sin β − α̈β̇ sin β) . (A.7)

The corresponding power counting is

E+DtE− ∼ E−DtE+ ∼ ξ3 ,

C1 ∼ Ω−2 , (A.8)

so that the second-order derivative term scale as

C1(E+DtE− − E−DtE+) ∼ ξ

(
ξ

Ω

)2

. (A.9)

As the simplest Lagrangian containing 2nd-order derivatives has been written out

for odd nuclei, we stop here temporarily and turn to the even-even nuclei, which is

invariant under time reversal. They require the total order of time derivatives to be

even. The only term meeting this requirement is (DtE+)(DtE−),

(DtE+)(DtE−) = α̈2 sin2 β + β̈2 + 2α̇2β̈ sin β cos β + α̇4 sin2 β cos2 β . (A.10)

The Lagrangian for even-even nuclei is

L(ee) =
C0

2
(α̇2 sin2 β + β̇2) +

C2

4
(α̇2 sin2 β + β̇2)2

+C3(DtE+)(DtE−) . (A.11)
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Still, we have the following power counting

(DtE+)(DtE−) ∼ ξ4 ,

C3 ∼ ξ−1Ω−2 ,

C3(DtE+)(DtE−) ∼ ξ

(
ξ

Ω

)2

. (A.12)

As we can see, the new second-order derivative term scales equivalently as NLO of

Nambu-Goldstone modes, which is a factor of two powers of ξ/Ω smaller than the LO

Nambu-Goldstone modes.

Now the Lagrangians of both even-even and odd nuclei have been obtained,

which contain time derivatives of Nambu-Goldstone modes up to 2nd order. One

naturally quests about what effects do the 2nd-derivative terms bring to the spectrum

of deformed nuclei. This cannot be answered until we obtain the Hamiltonian

and calculate the eigenenergy. A general method that aims to reduce the higher-

order derivatives in Lagrangian has been employed to convert Eq.A.7 and Eq.A.11

to an ordinary one with only 1st-order time derivatives. It uses the equations of

motion and substitutes the higher-order derivatives in the Lagrangian with lower-

order derivatives. This is also considered as equivalent to redefining the position

variables (i.e. making a variable transformation) that eliminates the higher-order

derivatives. Readers are referred to Ref. [62] for a detailed illustration of the method.

However, it turns out that the ordinary Lagrangian derived by the method

of position variables redefinition suffers some problems that violate the physical

properties of deformed nuclei. For instance, in the case of even-even nuclei we have

the following substitution of the accelerations based on the method in [62]

α̈ → −2α̇β̇ cot β ,

β̈ → α̇2 sin β cos β . (A.13)
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This is followed by a Lagrangian based on Eq.A.11 which has a very concise form

L
(ee)
tr =

C0

2
(α̇2 sin2 β + β̇2) +

C2

4
(α̇2 sin2 β + β̇2)2

+4C3α̇
2 cos2 β(α̇2 sin2 β + β̇2) , (A.14)

i.e. the second-order derivative term can be written as simply as E2
zE+E−, represented

in terms of Nambu-Goldstone fields. However, this Lagrangian is not rotationally

invariant. Therefore, the validity of the transformation needs to be further examined.

Whereas the transformation of acceleration Eq.A.13 still preserves the time-

reversal invariance in even-even nuclei, a transformation that breaks the time

invariance has also been derived for odd nuclei. The results are under further study.

In the next section, we present a variable transformation that differs from Eq.A.13

for even-even nuclei, but also keeps time-reversal invariance. The derivation of the

transformation is independent of any formal theory, but can be proved to be valid in

terms of reducing the higher-order derivatives in our effective Lagrangian. Correction

terms of higher order than NLO Nambu-Goldstone modes are always neglected in the

procedure.

A.3 Variable transformation

In this section we give a variable transformation that converts the effective

Lagrangian Eq.A.11 of even-even nuclei to a single time-derivative one. The

transformation does not rely on any formal theories that have been developed in

literatures now. The entire transformation can be decomposed into two steps, which

gradually achieve our purpose to reduce the derivative order.

We start from the Lagrangian

L(ee) =
C0

2
(α̇2 sin2 β + β̇2) +

C2

4
(α̇2 sin2 β + β̇2)2

+ C3(α̈2 sin2 β + β̈2 + 2α̇2β̈ sin β cos β + α̇4 sin2 β cos2 β) . (A.11)
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If we make the following transformation

α → α′ + ζα̈′ ,

β → β′ + ηβ̈′ , (A.15)

with ζ and η being unknown parameters to be determined. Later it will be more

clear why we adopt this form of transformation. The LO Lagrangian after the

transformation becomes

L
(ee)
LO =

C0

2
(α̇2 sinβ +β̇2)

=
C0

2

(
(α̇′2 + 2ζα̇′

...
α ′)(sin2 β′ + 2ηβ̈′ cos β′ sin β′) + (β̇′2 + 2ηβ̇′

...
β
′
)
)

=
C0

2
(α̇′2 sin2 β′ + β̇′2) + C0ζα̇

′...α ′ sin2 β′

+C0ηα̇
′2β̈′ cos β′ sin β′ + C0ηβ̇

′...β
′
. (A.16)

Note that the Lagrangian is truncated at the order ξ
(
ξ
Ω

)2
, which is NLO of Nambu-

Goldstone modes. The power counting of the parameters ζ and η must be enforced

as

ζ ∼ η ∼ Ω−2 . (A.17)

All the terms that are of higher order in the Lagrangian have been neglected. For

the Lagrangian terms at NLO, the expression does not change except that α and

β are simply replaced by α′ and β′. This is because that ζα̈′ and ηβ̈′ are already

higher-order corrections to α′ and β′.

There exist third-order derivatives of Nambu-Goldstone modes (scaling as
...
α ∼

...
β ∼ ξ3), which seem not easy to handle. However, recall that the Lagrangian is to be

integrated as action to apply the minimum action principle. This means performing a

partial integration of any single term in the Lagrangian will not change the equations

of motion or final results. More specifically, the products of first-order derivative
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and third-order derivative can be integrated and converted to quadratics of second-

order derivative. Let’s take a detailed look at the two terms that contain 3rd-order

derivatives in Eq.A.16

∫ f

i

C0ζα̇
′...α ′ sin2 β′ = C0ζα̇

′α̈′ sin2 β′
∣∣∣f
i
−
∫ f

i

C0ζ
′α̈′∂t(α̇ sin2 β′) , (A.18)∫ f

i

C0ηβ̇
′...β
′

= C0ηβ̇
′β̈′
∣∣∣f
i
−
∫ f

i

C0η
′β̈′∂tβ̇

′ . (A.19)

The first terms in both Eq.A.18 and Eq.A.19 are zero according to the variational

principle. Hence, the third-derivative terms in the Lagrangian can be replaced with

C0ζα̇
′...α ′ sin2 β′ → −C0ζ

′α̈′2 sin2 β′ − 2C0ζ
′α̈′α̇′β′ sin β′ cos β′ , (A.20)

C0ηβ̇
′...β
′ → −C0η

′β̈′2 . (A.21)

The entire Lagrangian becomes

L
(ee)
NLO = L

(ee)
LO +

C2

4
(α̇′2 sin2 β′ + β̇′2)2

+C3(α̈′2 sin2 β′ + β̈′2 + 2α̇′2β̈′ sin β′ cos β′ + α̇′4 sin2 β′ cos2 β′) ,(A.22)

L
(ee)
LO =

C0

2
(α̇′2 sin2 β′ + β̇′2)

−C0ζα̈
′2 sin2 β′ − 2C0ζα̈

′α̇′β′ sin β′ cos β′

+C0ηα̇
′2β̈′ cos β′ sin β′ − C0ηβ̈

′2 . (A.23)

Note that the transformed Lagrangian Eq.A.23 from the LO Lagrangian is already

not purely of LO. It contains higher-order correction terms originating from the

transformation. If we let ζ = η = C3/C0, we are immediately able to cancel several

terms in Eq.A.22 and get
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L
(ee)
NLO =

C0

2
(α̇′2 sin2 β′ + β̇′2) +

C2

4
(α̇′2 sin2 β′ + β̇′2)2

+3C3α̇
′2β̈′ sin β′ cos β′ + C3α̇

′4 sin2 β′ cos2 β′

−2C3α̈
′α̇′β′ sin β′ cos β′ . (A.24)

This Lagrangian contains less 2nd-order derivative terms compared to the original

one Eq.A.11. We will soon see as the second step another single variable transforma-

tion quickly eliminates all the 2nd-order derivatives at the NLO in Nambu-Goldstone

modes.

We have already successfully implemented the first transformation

α → α′ +
C3

C0

α̈′ ,

β → β′ +
C3

C0

β̈′ . (A.25)

The second transformation is

α′ → α′′ ,

β′ → β′′ + εα̇′′2 sin β′′ cos β′′ . (A.26)

α′ keeps the same, but β′ transforms in a slightly more complicated way. We explicitly

write out the transformation rule of β̇′ derived from Eq.A.26

β̇′ → β̇′′ + 2εα̇′′α̈′′ sin β′′ cos β′′ + εα̇′′2β̇′′ cos 2β′′ . (A.27)

Before we put it into Eq.A.24, a little more manipulation on it needs to be done.

Again, we conduct a partial integration on one of its term

∫ f

i

α̇′2β̈′ sin β′ cos β′ = α̇′2β̇′ sin β′ cos β′
∣∣∣f
i
−
∫ f

i

β̇′∂t(α̇
′2 sin β′ cos β′) , (A.28)
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which yields

α̇′2β̈′ sin β′ cos β′ → −2α̇′α̈′β̇′ sin β′ cos β′ − α̇′2β̇′2 cos 2β′ . (A.29)

The Lagrangian Eq.A.24 turns into

L
(ee)
NLO =

C0

2
(α̇′2 sin2 β′ + β̇′2) +

C2

4
(α̇′2 sin2 β′ + β̇′2)2

−8C3α̇
′α̈′β̇′ sin β′ cos β′ − 3C3α̇

′2β̇′2 cos 2β′

+C3α̇
′4 sin2 β′ cos2 β′ . (A.30)

Substitute Eq.A.29 into the above Lagrangian

L
(ee)
NLO =

C0

2
(α̇′′2 sin2 β′′ + β̇′′2) +

C2

4
(α̇′′2 sin2 β′′ + β̇′′2)2

−8C3α̇
′′α̈′′β̇′′ sin β′′ cos β′′ − 3C3α̇

′′2β̇′′2 cos 2β′′

+C3α̇
′′4 sin2 β′′ cos2 β′′ + C0εα̇

′′4 sin2 β′′ cos2 β′′

+2C0εα̇
′′α̈′′β̇′′ sin β′′ cos β′′ + C0εα̇

′′2β̇′′2 cos 2β′′ . (A.31)

Clearly, the 2nd-order derivative terms can be eliminated by letting ε = 4C3/C0. The

final Lagrangian is

L
(ee)
NLO =

C0

2
(α̇′′2 sin2 β′′ + β̇′′2) +

C2

4
(α̇′′2 sin2 β′′ + β̇′′2)2

+C3α̇
′′2β̇′′2 cos 2β′′ + 5C3α̇

′′4 sin2 β′′ cos2 β′′ . (A.32)

For cleanness we omit the primes

L
(ee)
NLO =

C0

2
(α̇2 sin2 β + β̇2) +

C2

4
(α̇2 sin2 β + β̇2)2

+C3α̇
2β̇2 cos 2β + 5C3α̇

4 sin2 β cos2 β . (A.33)
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The transformations Eq.A.25 and Eq.A.26 can be combined into a single transforma-

tion shown as follows

α → α′′ +
C3

C0

α̈′′ ,

β → β′′ +
C3

C0

β̈′′ +
4C3

C0

α̇′′2 sin β′′ cos β′′ . (A.34)

Again, as what has been done in deriving the Lagrangian, we also only keep terms of

up to NLO Nambu-Goldstone modes, i.e. the factor ξ2/Ω2 smaller than the leading-

order variables.

Many questions can be naturally raised about the transformed Lagrangian

Eq.A.33. Whether this Lagrangian is rotationally invariant for the axially deformed

nuclei? What is the conserved quantities for this Lagrangian? What is the expression

of angular momentum, and is it still conserved as derived in [13]? What is the

Hamiltonian? What does the rotational spectrum look like for this Lagrangian? How

is it altered by the second-order time derivatives compared to the results of first-

derivative theory? Furthermore, one is always supposed to make necessary physical

interpretation when performing a variable transformation. These are questions to be

answered in future study. We will give a thread of thought toward the solutions in

the next section.

A.4 Conserved quantity

In previous chapters, we have shown that the energy spectrum of deformed nuclei

is closely connected with the conserved quantity, namely the angular momentum.

Whether it is for even-even or odd nuclei, there is l(l+1) characterizing the rotational

band, as in Eq.3.12 and Eq.4.22. l(l+ 1) is either exactly the square of total angular

momentum or differs with it by only one term [13]. Thus, in our effective theory of

deformed nuclei, the angular momentum plays a central role in helping us understand

the physical properties and energy spectrum more precisely.
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For the Lagrangian for even-even nuclei with new 2nd-order derivative entered, we

have obtained a variable transformation that preserves the time-reversal invariance

and eliminates the 2nd-order derivatives in the original Lagrangian. The final

Lagrangian Eq.A.33 contains only 1st-order derivatives. Before one starts to compute

the Hamiltonian and eigenenergies, it may be helpful to ask what the corresponding

conserved quantities are. It is expected that the conserved quantity is still total

angular momentum, and the energy spectrum is a simple formula that can be

represented by the angular momentum. There are two paths that we can follow

to answer this question.

First, Eq.A.33 gives a normal Lagrangian with only 1st-order derivatives. The

expression of conserved quantity has been derived [13] by applying Noether’s theorem,

Qk =
N∑
i=1

∂L

∂q̇ν
M̂νk =

N∑
i=1

pνM̂νk , (A.35)

where the matrix M̂νk equals

M̂ =

(
− cot β cosα − cot β sinα 1

− sinα cosα 0

)
. (A.36)

This matrix transforms the infinitesimal rotation around Cartesian axes δωx,y,z to

the infinitesimal change in terms of the Euler angles δα and δβ, parameterized

also by Euler angles. The conjugate momenta pν in Eq.A.35 can be calculated

straightforwardly based on Eq.A.33

qα = C0α̇ sin2 β + C2α̇ sin2 β(α̇2 sin2 β + β̇2)

+2C3α̇β̇
2 cos 2β + 20C3α̇

3 sin2 β cos2 β ,

qβ = C0β + C2β̇(α̇2 sin2 β + β̇2) + 2C3α̇
2β̇ cos 2β . (A.37)
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Then, we can apply the inversion of the transformation Eq.A.34

α → α′′ − C3

C0

α̈′′ ,

β → β′′ − C3

C0

β̈′′ − 4C3

C0

α̇′′2 sin β′′ cos β′′ , (A.38)

and immediately obtain the expression of angular momentum Qk in terms of the

original Euler angles α and β.

This is the first approach to calculate the angular momentum, which primarily

relies on the variable transformation. Everything in the original theory can be

simply substituted through applying the variable transformation, which leads us to

the results for the 2nd-derivative Lagrangian. The second approach to derive the

conserved quantity is more straightforward. We can directly begin with the original

Lagrangian Eq.A.11, and calculate its conserved quantity without using the variable

transformation. Like the 1st-derivative Lagrangian, Noether’s theorem can be directly

applied to the 2nd-derivative Lagrangian.

Here, we will not calculate the conserved quantity (i.e. angular momentum) in

detail for the original 2nd-derivative Lagrangian. Rather, we only present the way

to apply Noether’s theorem that derives the conserved quantity for 2nd-derivative

Lagrangian, i.e. a general expression for the conserved quantity. Calculations for

specific case should be quite straightforward with our final result. For a Lagrangian

with 2nd-order derivatives of position, a variation of it according to the chain rule

can be expressed as

δL =
∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k +

∂L

∂q̈k
δq̈k , (A.39)

In addition, there is the equation of motion

∂L

∂qk
− d

dt

∂L

∂q̇k
+
d2

dt2
∂L

∂q̈k
= 0 . (A.40)
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Putting it into Eq.A.39 we get

δL =

(
d

dt

∂L

∂q̇k
− d2

dt2
∂L

∂q̈k

)
δqk +

∂L

∂q̇k
δq̇k +

∂L

∂q̈k
δq̈k . (A.41)

Note that
d

dt

(
∂L

∂q̇k
δqk

)
=

(
d

dt

∂L

∂q̇k

)
δqk +

∂L

∂q̇k
δq̇k , (A.42)

and
∂L

∂q̈k
δq̈k =

d

dt

(
∂L

∂q̈k
δq̇k

)
−
(
d

dt

∂L

∂q̈k

)
δq̇k . (A.43)

The variation of Lagrangian can be written as

δL =
d

dt

(
∂L

∂q̇k
δqk

)
+
d

dt

(
∂L

∂q̈k
δq̇k

)
− d

dt

(( d
dt

∂L

∂q̈k

)
δqk

)
. (A.44)

Applying Noether’s theorem we get

0 = δL =
dδQk

dt
, (A.45)

where δQk is the variation of the component of angular momentum and equals

δQk =

(
∂L

∂q̇k
− d

dt

∂L

∂q̈k

)
δqk +

∂L

∂q̈k
δq̇k . (A.46)

Now that δqk has been given [13]

δqk = Mkνδων . (A.47)

It should be pointed out that δω̇ν = 0, because the Cartesian coordinates do not

change with time. Therefore,

δq̇k = Ṁkνδων . (A.48)
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Finally, the component of angular momentum Qν is

Qν =

(
∂L

∂q̇k
− d

dt

∂L

∂q̈k

)
Mkν +

∂L

∂q̈k
Ṁkν , (A.49)

where Mkν is given by Eq.A.36 and Ṁkν is the derivative of it with respect to time.

Till now, we have developed the formalism to derive the conserved quantity

angular momentum for our 2nd-derivative effective Lagrangian of deformed nuclei, on

the basis of Noether’s theorem. It is straightforward to apply Eq.A.49 directly to the

Lagrangians Eq.A.7 and Eq.A.11 to compute the conserved angular momentum for

both even-even and odd nuclei. The results can also be compared with that obtained

by the first method, which utilizes the variable transformation. The consistency

between them will verify the correctness of both approaches, and give rise to the

right expression of the conserved quantity.
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